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PREFACE

This book, which grew out of lectures given at the NASA Lewis Research
Center, introduces the scientist and engineer with the usual background in
applied mathematics to the concepts of abstract analysis. The emphasis is not
on preparing the reader to do research in the field but on giving him some of
the background necessary for reading the literature of pure mathematics.

Although the material here is by no means original, the presentation
differs in some respects from texts on material of this nature. The proofs are
more detailed herein and quite easy to follow. We have attempted to indicate
how the material relates to and serves as a foundation for more advanced sub-
jects. We have also attempted at several places to show how the material
covered here relates to the more familiar “real mathematics.” Enough examples
are included to illustrate the concepts. No attempt is made to indicate the
original sources of the material or even to point out the originators of all the
concepts. Contrary to the usual practice, the relation between convergence
and continuity on the one hand and algebraic operations on the other is dis-
cussed in the abstract setting of linear spaces. This is done principally to famil-
iarize the reader with these very important concepts in a reasonably simple way.



CHAPTER 1

Elementary Set Concepts

Aside from being one of the principal tools of mathematics, set theory
serves also as a unifying principle and foundation upon which mathematics
can be based. A few mathematicians might even claim that mathematics is
nothing more than set theory. In any event, attempts to put mathematics on
set theoretic foundations have led to important contributions to the under-
standing of some of the more basic concepts of mathematics. However, our
interest here in set theory is its use as a tool in mathematics.

The study of sets began with Cantor, around 1874, and grew out of his
studies of the fundamental aspects of trigonometric series. Around the turn of
the century great progress had been made in the theory of sets by Cantor,
Russell, Frege, and others, and it appeared that there could be nothing which
would prevent basing all mathematics on set theory alone. However, in 1903,
when Frege was about to publish the second volume of his “Grundgesetze der
Arithmetik,” which was essentially his life work and relied heavily on the theory
of sets, Russell sent Frege his ingenious paradox, which seemed so shattering
to the foundations of set theory that Frege closed this volume with the following
acknowledgment:

A scientist can hardly encounter anything more undesirable than to have the foundation
collapse just as the work is finished. I was put in this position by a letter from Mr. Bertrand
Russell when the work was almost through the press.

Immediately set theoretic paradoxes began appearing in large numbers. In
some sense these paradoxes always seem to stem from the fact that sets which
are “‘too large” are encountered. From a practical point of view these paradoxes
may be avoided by always assuming that there is some possibly large but
fixed set from which, roughly speaking, all objects, which are considered in a
given discussion, are taken. We will express this principle a little more pre-
cisely in the subsequent discussion.

This procedure assures that no known paradoxes will occur, but we can

i



ABSTRACT ANALYSIS

never be absolutely certain that any system will be completely free from contra-
dictions. This was pointed out by Godel who proved that no consistent system
can be used to prove its own consistency.

It is possible to treat set theory itself as a mathematical discipline by
taking the concepts of set and membership as undefined and then setting up
exact rules to describe their interrelation. However, we make no attempt to
develop “axiomatic set theory’ here. On the contrary, our aim is only to develop
(in a fairly intuitive way) those concepts of set theory which will be useful for
the work in the following chapters. In this way, we shall follow the ideas of
Halmos as set forth in his “Naive Set Theory” (ref. 1).

Before proceeding with the discussion of sets, let us briefly introduce
some terminology which is encountered frequently in mathematics.

Statements which must be either true or false (even though we may not
know which) are called propositions. For example, “Sauerkraut is better than
potato salad” is a statement which cannot be classified as being either true
or false. On the other hand, a statement such as ‘“The sauerkraut sold in this
supermarket is more expensive per pound than the potato salad” is a statement
which must be either true or false. In this chapter propositions will be desig-
nated by single letters.

Suppose that p and ¢ are any two propositions. In mathematics, the sen-
tences “p implies q°, “if p, then ¢, “p only if ¢, “p is a sufficient condition
for q”, and ““q is a necessary condition for p”’ occur frequently. They all mean
that whenever the proposition p is true, then the proposition ¢ must also be
true or, what is the same thing, whenever q is false, p must also be false (for
if ¢ were false, p could not be true since this would imply that ¢q had to be true
also). The sentences “p is necessary and sufficient for ¢’ and “p if and only
if ¢’ mean both p implies q and q implies p. The first of these shows that if p
is true, ¢ must be true. The second shows that if p is false, then ¢ is false also.
Hence, p and g must either both be true or both be false. Thus, for example, if
the proposition p is “Paul is taller than Harry” and the proposition ¢ is “Harry
is shorter than Paul,” it is clear that p if and only if g. If p is the proposition
“Paul is taller than Harry and Harry is taller than Mary” and g is the proposition
“Paul is taller than Mary,” it is clear that p implies ¢ but it is not true that ¢
implies p.

A set is any collection of objects called elements or members. The only
characteristic of a set is the particular objects which it contains. Sets are
generally denoted by capital letters. Lowercase letters are used mostly for the
members of sets. The notation x€E means that x is a member of the set F,
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ELEMENTARY SET CONCEPTS

and x is said to be contained in E or to belong to E or, simply, to be in E. The
negation of the statement xEE, denoted by x & E, means that x is not a member
of E. For example, if E is the set of positive integers, then 2 € E but—2 ¢ E.
In general, a diagonal line running through a symbol usually denotes the logical
“not statement:” for example, the symbol # means “not equal to.”

Sets are, in fact, completely determined by the members which they
contain. In line with this idea we make the following definition of equality.

Definition 1.1: Two sets E and D are said to be the same set or equal
if they contain the same objects. This is denoted by writing E=D.

Stated in a slightly different way, the two sets E and D are defined to be
equal if there is no element of E which is not an element of D and if there is no.
element of D which is not an element of E. This means that £ and D are equal
if every element of E is an element of D and every element of D is an element
of E. From a practical point of view this last form of the definition of equality
is the most useful one because it is most directly related to the method most
used in practice to decide if two sets are equal. It will be useful to have a special
name (subset) for the situation when the first half (but not necessarily the second
half) of the requirements of this definition is met by two sets.

Definition 1.2: If there is no element of a set E which is not an element
of a set D, E is said to be a subset of D, or E is said to be contained or in-
cluded in D, or D is said to contain E. This is denoted by writing ECD or
sometimes DDOE.

This definition means that if ECD then every element of E must be an
element of D. Note that the symbol C only connects sets. If D is the set of
positive integers and E is the set whose elements are 1, 2, and 3, then ECD.
However, it is not correct to write 2CD.

It is often very helpful to visualize sets as regions in the plane. The pictures
obtained in this way corresponding to the various types of operations between
sets (which will be discussed subsequently) are called Venn diagrams. Figure
1-1 illustrates the meaning of “D is a subset of E.”

To avoid any of the known set theoretic paradoxes, mathematical struc-
tures are always set up in a manner which assures that there is some large but
fixed set X (sometimes referred to as the universal set) such that all sets which
arise can be considered as being either subsets of X or sets whose elements are
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FiGURE 1-1.— Venn diagram for D C E.

subsets of X, etc. Sometimes this universal set is not mentioned explicitly in a
given discussion but it will always be clear from the context that such a set
exists. There is no reason why the elements of sets cannot be sets themselves!
In fact, this is a situation which frequently arises in mathematics. Sets whose
elements are sets are usually called families or collections in order to keep the
various levels of set construction clearly in view. Actually, there is no reason
why a given set D cannot simultaneously have a set E as one of its elements
and an element of E as another. For example, suppose that the universal set is
the set of positive integers and that the set E consists of the elements 1 and 2.
If D is the set whose elements are 1, 2, 3, and E, then it is not only true that
E € D, but it is also true that £ C D. On the other hand, if D is the set whose
elements are 1, 3, and F, it is still true that E € D but it is no longer true that
E C D. Thus, a set E is not a subset of a set D unless all the elements of E are
included among the elements of the set D. This example illustrates a difference
between elements and sets. It is, however, unfortunate that both the symbols
€ and C are read as contained in even though they refer to very different
things. Sometimes, then, it is necessary to decide from the context which of
these two meanings is to be attributed to the phrase “contained in.”

The form of the definition of equality of sets is given in the paragraph
immediately following Definition 1.1 shows that, if £ and D are any two sets,
E=D if and only if E C D and D C E. It also follows directly from Definition
1.2, for arbitrary sets E, D, and A, that if E C D and D C A, then E C A.
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According to the wording of Definition 1.2, E C E for every set E. On the other
hand, for any reasonable set E, it is never true ! that £ € E. If E C D and there
is at least one element of D which is not an element of E (i.e., the second half
of the requirements of the last form of the definition of equality is not met),
E is said to be a proper subset of D.

Some authors use the notation £ C D to mean E is a proper subset of D.
If this is done, they write E C D where we have written £ C D. We shall not
follow this convention here.

One usually conceives of sets as having at least some elements but as it
turns out it is very desirable to consider also the set which has no elements.
Because a set is completely determined by its elements, there is only one such
set and it is denoted by the symbol @ and called the empty set. Now @ must be a
subset of every set D, since @ contains no elements and therefore there is no
element of @ which is not an element of D.

Clearly, if E, D, and A are any subsets of a set X, and x is any element of X,
statements like “E C D,” “E C D and D C A,” “x € E,” etc., are propositions.
Large parts of mathematical proofs are composed of statements containing
propositions of these types.

Before discussing the methods for specifying sets it will be helpful to
introduce a certain concept from logic. Propositions usually contain the
“names”’ of (or symbols for) certain objects. For example, the proposition “Paul
is taller than Harry” discussed previously contains the names of the objects
Paul and Harry. If E is a particular subset of some universal set X and ¢ is a
particular element of X, then the statement ‘“t€E” is a proposition which
contains the ‘“names” of the objects ¢ and E. In this latter example, we can
obtain a different proposition by replacing ¢ by the name of some other element
of X and, in general, can obtain an entire collection of propositions by succes-
sively replacing ¢ by the names of all the elements of X. This collection of
propositions may be described as consisting of all propositions “xEE” as
x varies over all the elements of X. Any statement of this type, which contains
a symbol x of variable meaning in a place where the “name” of a particular
object would normally occur and which becomes a proposition when x is
replaced by the “name” of a member of some set D, is called a propositional
scheme and is denoted by a symbol such as P(x). The set D is called the domain
of P(x). If s is the “name” of some member of D, the proposition resulting from

!In fact, this situation can occur if we do not limit the size of sets as explained previously. Since this is always
- done in mathematics, for our purposes it is never true that £ € E.
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replacing x by s in P(x) is denoted by P(s). Thus, in the preceding example,
P(x) is the symbol for “x& E”” and the domain (i.e., D) of P(x) is X. Note that
x serves only to save the place where the name of an object is to be inserted.

Effectively, sets are specified in one of two ways. First, if a set consists of a
finite number of elements, since a set is completely determined by its elements,
we can specify the set by listing its elements. When this is done, the elements
are enclosed by braces and separated by commas. Thus {d, 1, 2, 3} is the set
whose elements are d, 1, 2, and 3. For sets with an “infinite’” number of ele-
ments, this procedure cannot be used.

On the other hand, suppose P(x) is some propositional scheme with a
domain D. For each particular element s€ D, P(s) will either be true or false.
There will then be a certain subset of D, say E, which consists of all the ele-
ments x of D for which P(x) is true. The set E is denoted by

E={xED|P(x)}

which reads “E is the set of all x contained in D such that P(x) (is true),” the
words in parentheses usually being omitted. Sometimes, when it is understood
from the context, the domain D is omitted and we write

E={x|P(x)}

For example, suppose P(x) is the propositional scheme x2=x and its domain
is the set J of all positive integers. Then the set {xEJ|x*=x} is the set of
x€J (or the set of all positive integers x) such that x>=x. This is just the one
element? subset {1} of J. On the other hand, the set {xEJ|x+1=x} is the
empty set @.

In this manner then, every propositional scheme defines a set and since,
for any set E, “x € E” is a propositional scheme, every set determines a
propositional scheme. In fact, this method of specifying sets includes the
method of listing the elements. For example, if E= {1, 2, 3} and J is the set
of all positive integers, then

E={xe]Jlxe {1, 2, 3}}

since x € {1, 2, 3} is a propositional scheme.
We might point out that two different propositional schemes, say P(x) and

2 Sometimes one element sets are called singleton sets. A distinction is always made between a one element set
and the element itself. Thus {1} is a different object than 1.
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O (x), with the same domain D may define the same set. For suppose that, for
each d € D, P(d) if and only if Q(d). Then P(x) and Q(x) are either both
true or both false at every point x € D. Hence, the set of all x for which P(x) is
true is the same as the set of all x for which Q(x) is true. That is

{x € D|IP(x)}={x € D|Q(x)} 1-1)

On the other hand, if equation (1-1) holds, then, for any d € D, either
d € {x € D|P(x)} in which case d € {x € D|Q(x)} and hence P(d) and
Q(d) are both true or d & {x € D|P(x)} in which case d & {x € D|Q(x)} and
hence P(d) and Q(d) are both false. Thus, P(d) if and only Q(d).

In a similar way, it can be seen that the inclusion
{x €D|P(x)} C {x€D|Q(x)}
means that for all d € D, P(d) implies Q(d).

The preceding paragraph illustrates how statements involving proposi-
tional schemes can be transformed into relations between sets. In fact, it is gen-
erally true that propositional schemes, which arise naturally in any logical
reasoning process and which may involve very complicated ideas, can be
replaced by sets which are much easier to think about. This is the reason why
set theory is such an important tool in mathematics.

We now introduce some elementary ways of combining sets to form new
sets. Note that we always assume sets under consideration are subsets of some

fixed set X.

Definition 1.3: The union, D U E, of two sets D and E is the set which
consists of all elements which are either in D or3in E. Or,

DUE={x|]x €D orx € E}
This definition is illustrated in figure 1-2(a).

Definition 1.4: The intersection, D N E, of two sets D and E is the
set which consists of all elements which belong to both D and E. Or,

DNE={x|x EDandx € E}

3 In mathematics the word “or” is always interpreted as meaning ‘“andfor.” This is called the “inclusive or.”
Thus the statement *“the colors are yellow or red”” means that the colors may be yellow or they may be red or they may
be both yellow and red.
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(c) {d)
(@D UE. (b) DN E.
(¢c) D—E. (d) E-.

FIGURE 1—-2.— Venn diagrams for elementary set operations. (Shaded areas denote the indicated
sets.)

If DN E=Y, D and E are said to be disjoint or nonintersecting. If
DN E#@, D is said to intersect E.

This definition is illustrated in figure 1-2(b).
It is easy to prove from these definitions that, for any two sets D and E,

DCDUE,ECDUE,DNECD,andDNECE.

Definition 1.5: The difference, D —E, of two sets D and E is the set
which consists of all elements of D which are not elements of E. Or,

8



ELEMENTARY SET CONCEPTS
D—E={x|x ED and x € E}

IfE C D, D—E is called the complement of E in D, or the complement of
E relative to D.

If X is the universal set, X—E is called the complement of E and is
denoted by a superscript c; thus, X —E=E°. Clearly,

Ec={x|x € E}

This definition is illustrated in the Venn diagrams of figures 1-2(c) and (d).
There are a number of relations which connect these operations. Some of
the more important ones are listed in table 1-1. The proofs of some of the laws
in table 1-1 are simple consequences of their definitions. Since the intersection

Table 1-I. —Set Theoretic Identities
Identity
Idempotent Law......cccoceeeeeniniennnen DuD=D DND=D
Commutativity ..o.veeeenreienrniennennes DUE=EUD DNE=END
ASSOCIAHIVILY vueeereereiereniieeeeannes (DUEYUG=DU(EUG) DNEYNG=DN(ENG)
Distributive Law.........ccovvvivienennne. DUENG=(DUE)NDUG) DNEUGH=MDNE)YUDNG)
Tdentity .o ooeeeeneeiieeerereaineeenneen Du@=D DNX=D
DUX=X Dn@=0

Complements.......ccccveeeveeiveieennns DuD=X D—E=DNE* DNDe=@

(D)e=D Xe=0 @Gc=X
DeMorgan’s Law.....c.uvverrnnereennnnnn. (DUE)e=DcNE: (DNE)=DcUEc

and union of sets are just the set theoretic equivalents of the simple logic con-
nectives, ‘“and” and “‘or,” the identities involving only unions and intersections
can be proved by expressing them in terms of a corresponding law of logic.
There is an essentially equivalent procedure to this which is better suited to
our purposes since it demonstrates a frequently used technique. We will demon-
strate the procedure by proving the first distributive law. Set L=D U (E N G)
andR=(DUE)N (DUG).Ifx € L, then x is either in D or in E N G.
First suppose thatx € E N G; then x € E and x € G. It must also be true,
therefore, that x ED UE and x € D U G; hence, x € (DU E)N (D U G).
On the other hand, if x € D, then it is certainly true that x € D U E and
x € D U G;thatis,x € (D U E) N (D U G). In either case, then,x € L implies
that x € R. This shows, since x was an arbitrary element of L, that L C R.
Conversely, suppose x € R; then, x € D U E and x € D U G. Hence, if

9
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x & D, thenx € FE and x € G. That is,x € E N G so it must also be true that
x €EDU(ENG). On the other hand, if x € D, then certainlyx EDU(ENG).
Since either x & D or x € D must be true, we conclude that x € L; hence,
R C L. Combining this with L C R, we conclude that L=R.

This is an extremely detailed proof of a very simple statement, but it was
included to illustrate the method.

The proofs of one of DeMorgan’s laws and the second distributive law are
given for a more general case in chapter 5. The rest of the entries in table 1-1
are more or less direct consequences of the preceding definitions. Some of the
relations in table 1-1 are illustrated in the Venn diagrams of figure 1-3.

The associativity of the unions and intersections of sets shows that we
can write such things as D U EU G or D N E N G with no danger of misinter-
pretation. It is clear that

(DUEYUG={x|xEDorx€ E orx € G}

The associative law and consequently the omission of parentheses can be
extended to the unions and intersections of any finite number of sets.

If D and E are two sets, it is easy to verify that if one of the following three
relations is true the other two must be also:

DCE (1-2a)
DNE=D (1-2b)
DUE=E (1-2¢)

These can be proved very simply by using the same procedure as in the proof
of the distributive law. It is quite easy to see, for any sets D, F, and G, that
DCGandEC G,ifandonlyif DU E C G, and that G C D and G C E, if and
onlyif GC DN E.

Sets are defined in such a way that they have no internal organization.
Thus, the set {p, q} is the same as the set {q, p}. The need, however, arises
for “sets” which do have some internal organization; that is, “sets’ in which
the order of the elements is relevant. A collection of two objects, in which we
distinguish between the first object and the second object, is called an ordered
pair. The ordered pair whose first element is p and whose second element is q
is denoted by (p, q). Thus, according to this definition,

{p, q) =(s, t) if and only if p=s and g=1¢ (1-3)
10
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(a) DU (EN G). byDnN (EUG).
c)DNOENG.

FIGURE 1-3.—Venn diagrams for set theoretic identities. (Shaded areas denote the indicated
sets.)

and therefore
(p.q) #{q,.p)if p#q

An alternate definition of an ordered pair which does not introduce the
concept of order but contains it could have been given. This can be accom-
plished by setting

5555555 0O-70—-2 n
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<p9 Q>:{p9 {p9 Q}} (1—4‘)

It is not hard to show that equation (1—4) satisfies the condition (1-3) and there-
fore constitutes an acceptable definition of ordered pair (actually some proof
is needed to show this). But this is unnecessary elegance for our purposes and
the definition given previously will suffice.

In a similar manner, we can define the ordered triple {p, q, s) to be the
collection of three elements in which the first, second, and third elements are
distinguished from one another, and, in general, the ordered n-tuple to be the
collection {p1, p2, . . ., pn) in which the order of all n elements is distinguished.

It is often useful to distinguish, by special notation, sets whose elements
are ordered pairs or, in general, ordered n-tuples. Thus, if D and E are any
two sets, the set of all ordered pairs (d, e), whose first element is in D and

whose second element is in E, is called the direct product or Cartesian product
of D and E and is denoted by D X E. Symbolically then, D X F is the set

DXE={(d,e)ld €D and e € E}

and, in general, for any n sets D;, Dy, . . ., D, we can define the direct product
D X. . .XDyof Dy, Ds,. . .,Dyto be the set

DiX. . .XDy={{(dy,. . .,du)|di EDiand. . .d, € Dy}

n
Sometimes the notation X D;is used for D;X. . . X D,.

i=1

For example, if D={1, 2} and E={3, 4}, then DX E={(1, 3), (1, 4),
(2,3),(2,4)}.

There is nothing in this definition which requires that D and E be different
sets. Since every point in a two-dimensional plane is located by giving exactly
two numbers (i.e., the coordinates of that point), we may think of a point in the
plane as being an ordered pair of real numbers: the first element of the ordered
pair being the first coordinate, and the second element the second coordinate.
The entire two-dimensional plane is then the set of all the ordered pairs of real
numbers that can be formed. Thus, the two-dimensional plane is the direct
product of the set of real numbers with itself. We shall discuss this again in a

more general context in chapter 3.
It should be noted that

DXEXG#DX(EXG)# (DXE)XG

since

12
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DXEXG={(d,e,g)|ld €D and e € E and g € G}
DX (EXG)={{(d, (e, g))|d €D and (e, g) € EXG}
(DXE)XG={{({d, e}, g)|{d,e) € DXE and g € G}

and (d, e, g), (d, {e, g)) and {({d, e), g) are not the same objects. This dis-
tinction is, however, unnecessary for our purposes and, since no contradiction
can arise if we do so, we shall consider (d, e, g), (d, (e, g)), and ({(d, e), &)
to all be the same object—namely, the ordered triple. With this convention,
the direct product is associative. Of course all these remarks apply to the
ordered n-tuple. The direct product is not commutative since this contradicts
the meaning of the ordered pair.

13






CHAPTER 2

Real Numbers

The development of a rigorous theory of the abstract concepts of analysis
discussed herein requires precise specification of the properties of the real
numbers. In addition, many of the abstract concepts of analysis are generaliza-
tions of certain properties of the real numbers. A better understanding of these
concepts is often obtained when they are compared with the properties of the
real numbers from which they came. For these reasons, the properties of the
real numbers must be formalized in a manner that will subsequently be useful.
Most books concerned with material at the level of this publication construct
the real numbers from more fundamental concepts. In fact it is usual to con-
struct the real numbers from the rational numbers (by the use of Dedekind
cuts), the rational numbers from the natural numbers, and then to relate the
natural numbers to more fundamental set theoretic concepts. For our purposes,
however, it is sufficient to consider the real numbers as already given and to
state their properties as axioms in a precise way. Much of the material in this
chapter will be familiar to the reader although it is quite possible that he has
not seen it stated in the form given herein.

Three groups of axioms are given which completely characterize the real
numbers. The first of these, the field axioms, contains all the algebraic proper-
ties of the real numbers. The second group contains all the order properties
of the real numbers, that is, those properties which have to do with one number
being larger than another. As a consequence, these order properties also con-
tain the concepts of absolute value and distance which are introduced in
chapters 3 and 6.

These two groups of axioms and their consequences will be familiar to
the reader, and we will use any of their consequences that are needed without
making any explicit mention of how they arise. In fact, these axioms are in-
cluded principally for comparison with the postulates of a normed linear space
(introduced in chapter 3), which is a generalization of these groups. On the
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other hand, the consequences of the third group, which actually consists of a
single axiom, will probably be much less familiar. For our purposes, this group
is perhaps the most important of the three. This third axiom refers to the com-
pleteness properties of the real numbers. It states essentially that there are
no ‘““gaps’ in the real numbers.

I. Field Axioms: With any two real numbers, a and b, the two operations
+ and - each associate unique real numbers, denoted by a+ b and a - b, respec-
tively, in such a way that, if a, b, c, etc., are real numbers, the following axioms
hold:
Addition axioms:

Al) at+b=b+a

(42) at+b+c)=(a+b)+c

(A43) There is a number 0 such that for every real number a, a+0=a.

(A4) For every real number a there is a real number denoted by —a

such that a+ (—a)=0.

Multiplication axioms:

(M1) a*(b-c)=(a-b)-c

(M2) There is a number 1 such that 1+ 0 and, for every real number

a,1l-a=a.
(M3) a*b=b-a
(M4) For every real number a different from zero there is a number

a~! such that a - a1=1.
Distributive axiom:

(D1) a*(b+c)=(a b))+ (a-c)

II. Order Axioms: There is a subset & of the real numbers called the

. positive numbers such that if a and b are any numbers the following are true:

O1) For every real number a at least one of the following must be true:
a=0;a € #; or —a € £.

02) a € P implies —a & P.

03) a, b € P implies a+b € 2.

04) a, b € P implies a-b € P.
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These axioms actually define the set & of positive numbers.* However,
they are entirely equivalent to defining the concept “larger than” denoted by
the symbol >, for we need only require, for any two real numbers

a+(—b)e

and the symbol > will be the same one with which the reader is already familiar.
For example, axiom (OI) is equivalent to the fact that for any two numbers
a and b either @ > b or b > a or a=b must hold. To see this, replace a+ (—b)
in axiom (OI). The symbol < is defined by

a<bif and only if 6 > a
and the symbol = is defined by

a=bifand onlyifa>bora=5b
Before giving the completeness axiom we need the following definitions.

Definition 2.1: 4 set E of real numbers is said to be bounded above
if there exists a real number p such that x < p for every x € E, and any number
p with this property is said to be an upper bound of E. A set E of real numbers
is said to be bounded below if there exists a real number p such that x = p

for every x € E, and any number p with this property is said to be a lower
bound of E.

Definition 2.2: If p is an upper bound of a set E, then p is said to be
the least upper bound of E if no real number which is less than p is an upper
bound of E. If p is a lower bound of a set E, p is said to be the greatest lower
bound of E if no real number which is larger than p is a lower bound of E.

Clearly, there cannot be two least upper bounds of a given set: if p and ¢
were two least upper bounds of E such that p # ¢ then either p < g, in which
case p is not an upper bound of E, or ¢ < p, in which case ¢ is not. Hence, we
are justified in saying “the” least upper bound in Definition 2.2. With these
definitions we can now introduce the completeness axiom.

4 The absolute value |a| of a number a is defined by

—aif—a€ P
la]=
aif—ag P
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I11. Completeness Axiom: Every nonempty set of real numbers which
is bounded above has a least upper bound.

It is not obvious that this axiom is equivalent to stating that there are no
“gaps’ in the real numbers. The demonstration of this fact, however, would
lead too far into the foundations of number theory.

The terms supremum and infimum are used interchangeably with the terms
least upper bound (lub) and greatest lower bound (glb), respectively. The least
upper bound of a set E is sometimes denoted by lub E and sometimes by sup E.
Similarly, the greatest lower bound of E is sometimes denoted by glb E and

sometimes by inf E. It is also common to write lub x or sup x for lub £ and glb x

xEE xEE x€E

or inf x for glb E. If the set E is defined by a propositional scheme P(x), the
rxEE

notations lub {x | P(x)} or sup {x | P(x)} or even lub x or sup x are used for lub E,
P(x) P(x)

with a similar convention of course for glb E. If the propositional scheme
P(x) or the set E is understood from the context, we sometimes write lub x or
sup x or glb x or inf x with the obvious meaning,. It is clear from Definition 2.2
and the familiar properties of the real numbers that

b x=—1ub (— _
gpm Y @-1a)
lub x=—glb (—

lub x=—glb {7x) (2-1b)

These identities are often useful in transforming statements about the su-
premum into statements about the infimum.

Clearly, if any set E contains a largest member vy, then by definition y is
an upper bound of E. But it must also be true that y=lub E for, if x is any real
number such that x <y, then the element y of E is larger than x and so x is
not an upper bound of E. On the other hand, if any upper bound of E, say p,
belongs to E, then p is both the largest member of £ and the least upper bound
of E. When lub £ € F or glb F € E, we shall sometimes write max E in place
of lub E or min E in place of glb E.

Clearly, every nonempty finite set of real numbers, say {x;, x2, . . ., 2},
has a largest element x; and a smallest element x;. Hence, x;=lub {x1,. . ., xx}
and x;=glb {x1,. . ., xx}. It is also true that every nonempty subset of the posi-

tive integers has a smallest element. It is easy to see that, if £ C D and the least
bound y of D exists, lub E < lub D because every x € E is also contained in D
and hence x < y for every x € E. Therefore, y is an upper bound of E and so
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cannot be less than lub E. These very simple properties of the infimum and
supremum find many applications in the following chapters.

We shall take for granted the facts that the integers and the rational num-
bers are subsets of the real numbers and that for any real number p there is an
integer n such that n > p. Actually, this last statement can easily be proved
from the completeness axiom and the fact that, for every integer m, m+1 is
an integer which is larger than m, but we shall not bother to do so here. While it
is also quite easy to prove from these facts that the following statement is true,
for our purposes it will be sufficient to merely list it as an axiom.

Axiom of Archimedes: Between any two real numbers there is a rational
number.

This means that if p and g are any real numbers and, say for definiteness,
p < g, we can find a rational number r such that p<r <gq.

One of the properties of the real numbers is that for every real number p
there is a real number g such that ¢ > p; that is, there is no largest (and no
smallest) real number. For many purposes, however, it is convenient to be
able to talk about a largest and smallest number. This can be done if the set
of real numbers is enlarged in the manner indicated in the following definition.

Definition 2.3: The extended real number system is defined to be the
set which consists of all the real numbers plus the two symbols +© and —®
which, for every real number p, have the following properties:

(1) —o<p<+o
(2) pt+(+°)=+®, p+ (-®)=—x

+ p>0
(3) pr(+»)=
— p<O0
b _ P _
() =L

(+%0) + (+®) =+,  (—0)+ (=) =—0c0
(5)

(+ ) - (o) =00, (=) - (o) =Foo

The operation (4 )+ (—) is not defined. We shall also not define
0:(+x) and 0 (—x). However, sometimes the convention 0 - (+ ) =0 is
adopted, particularly in the theory of integration.
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The extended real numbers have many of the algebraic properties of the
real numbers especially if the arbitrary convention 0 - (+ o) =0 is adopted.
A notable exception is that there is no extended real number p such that
p+ (+0)=0. Also, when we are dealing with the extended real numbers we
can not conclude from the fact that a+b=c+ b that a=c. When it is desired
to make explicit the distinction between the real numbers and the extended real
numbers, the former will be termed finite.

The introduction of the symbols +® and — o with their order properties
(i.e., + o is larger than any real number and —  is smaller) provides two num-
bers which are upper and lower bounds of every set. The following definition
uses this fact to eliminate the restriction “bounded above’ in the complete-
ness axiom.

Definition 2.4: If E is a nonempty set of extended real numbers and if,
for every finite number vy, there is a p of E such that p > v, then the least upper
bound of E, lub E, is defined to be + . A similar convention is adopted for the
glb E. If E={+ =}, we define glb E to be +x, and if E={—x}, we define
lub E to be — .
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CHAPTER 3

Vector Spaces

A favorite occupation of the nineteenth century algebraist was the gen-
eralization of quadratic and bilinear forms from three to any finite number of
variables. The algebra which occurred as a consequence of this was soon inter-
preted as the geometry of hyperquadratics in n-dimensional space. With this
interpretation many of the familiar problems in three-dimensional space sug-
gested very obvious things to do in n-dimensional Euclidean space.

Around the turn of the century the work begun by Cantor and carried on
principally by Fréchet, which we shall discuss in somewhat more detail in
chapter 6, led to the concept of a space as being any set of points of unspecified
nature subject to certain postulates. Today, just about all the research in
abstract mathematics is concerned with studying one type of space or another.
The postulates of the spaces that are studied are usually designed to mirror
those properties of the real numbers or of the real functions of a real variable
which lead to useful results when taken over into this more general setting,
As already mentioned in the preceding chapter, the Field Axioms I contain
all the algebraic properties of the real numbers and the Order Axioms II con-
tain the concept of absolute value.

In this chapter, we shall first define a space whose postulates mirror some
of the field axioms (the linear properties) and as a result a purely algebraic
space will be obtained; that is, there will be no geometric relation between the
points of the space. Next, we will add to this space some additional postulates,
which mirror some of the order axioms and their consequences, in such a way
that these postulates abstract the notion of absolute value. It will then be
shown that the abstract spaces obtained in this manner (which are called
normed linear spaces) not only contain the real numbers as a special case, but
also the n-dimensional Euclidean space. In 1922 Banach introduced the
normed linear space with one additional postulate. We shall not deal with
this postulate, which mirrors the completeness axiom of the real numbers,
until chapter 9.
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QOur interest here in normed linear spaces is to put them to work to study
the relation between algebraic operations on the one hand and continuity and
convergence on the other.

Apropos of this, we first define vector or linear space (compare with the
field axioms in chapter 2).

Definition 3.1: A real (complex) vector space is a set V, whose elements
are called vectors, together with the set & of all real (complex) numbers and
an algebraic operation, called addition, which associates with any two ele-
ments vy, v2 € V a unique vector, denoted by v, +v., in such a way that, if vs
is any vector, the following are true:

An ntv=uv-tun (Commutativity)
A2) v+ (v2t+wv3) = (v1+02) + o3 (Associativity)
A3) There exists a vector denoted by 0 and called the zero vector such
that, for every v € V,v+0=v (Identity)
A4) To each v € V there corresponds a vector denoted by —v such that
v+ (—v)=0 (Inverse) ®

Further an operation, called multiplication, which associates with any
element v € V and any real (complex) number o, a unique vector denoted by
aw, is defined in such a way that, for any B € &, the following axioms hold:

(M1) a(Bv)= (aB)v (Associativity)
M2) lo=v (Identity)

Finally, the following two distributive laws hold for any o, 8, € % and any
v, U2 EV:

(DI) a(vy+v2) = av, + avz (Distributive)
(D2) (a+B)vi=av, + Bu (Distributive)

In the context of vector spaces, the elements of .¥ are often referred to

as scalars. It should be noted that we have made no distinction between the
notation for the zero vector (sometimes called the origin) and for the number

5 The properties (Al) through (A4) are those of an Abelian group. Thus, every vector space is an Abelian group with
respect to the operation +.
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zero. However, this is common practice since no confusion arises from it. It
is a direct consequence of axioms (Al) and (A3) that the vector denoted by 0
is unique: for, suppose ' was another such vector; then, v+ 0 =v for all
v € V. In particular, setting v= 0 in this equality shows that

04+0'=0
But setting v=0" in (A3) gives
0'+0=0
Now (A1) shows that the left sides of these two equalities are equal; hence,
0=0’

We are therefore justified in calling 0 the zero vector.

It is standard practice, although not really logically consistent, to refer
to the set V alone in Definition 3.1 as the vector space. After all, we have not
changed V in any way just because we have in mind certain algebraic operations
between its members and the members of %. As a matter of fact, this sort of
thing is quite common in mathematics and we shall meet it again — for example,
in the discussion of metric spaces. Following this procedure tends to avoid an
undesirable awkwardness.

" Another term for vector space is linear space. The two terms will be used
interchangeably throughout the text.

It is easily verified that the real numbers satisfy the axioms of a real
vector space and the complex numbers satisfy the axioms of both real and com-
plex vector spaces, with the usual method of adding and multiplying complex

numbers. The following simple theorem is an immediate consequence of
Definition 3.1.

Theorem 3.2: Let V be a real (complex) vector space and suppose
v1, U2, U3 E V. Then

(a) v1+ve=uv3+v2 implies vi=1; (Cancellation Law)
(b) Ov;=0
(c) The additive inverse is unique and (—1)y,=—1v,

Proof: Part (a). This follows immediately from postulates (A2) to (A4) for, if
— s is added to both members of v; +vs=wv3+ vs, we get

(vi+v) + (—v2) = (v3+12) + (—12)
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Using (A2) gives
vt (2 + (—m)) =vs+ (v2+ (—12))
Using (A4) gives
1 +0=v3+0
and finally we see from (A3) that

V1 = U3

Part (b). This follows from part (a) and from postulates (D2) and (A3) for
if « is any scalar, then it follows from (D2) that

o= (04 a)v;=0v; + avy
and so from (A3) we see that
0+ av, = av,=0v + av
Hence, it follows from part (a) that
0=0v;

Part (c). We first show that the vector — v is unique. Suppose w was another
additive inverse of v. Then, v+w=0. It is clear from (Al) thatv+ (—v) =v+w,
and then applying (A4) to this shows that (—v) +v=w-+v. Thus, the first part
of this theorem shows that —v=w.

To complete the proof of part (c) we use propositions (M2) and (D2) and
part (b) to get

(_ 1)U1+121= ("'1)1]1"‘ 1U1: ('_1+ 1)’1]1=0’01=0
Since the additive inverse —v; is unique, we conclude from this that

—Dvi=—wn
Given a vector space V, it is natural to inquire as to which subsets of V'
are themselves vector spaces. It is clear that not all subsets of /' can be made

into vector spaces by imposing the rules of addition and scalar multiplication
defined on V. With this in mind we make the following definition.
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Definition 3.3: Let V be a vector space and let U C V. Suppose that, for
every vy, v2 € U,

av; + Br.€U

for all scalars o and B. Then, U is called a linear subspace of V or more
simply a subspace of V.

It now follows immediately from Definitions 3.1 and 3.3 that every linear
subspace of a vector space is a vector space in its own right with the same
definition of addition and multiplication as in the original space.

The concept of vector space is a purely algebraic one and therefore (the
reason for this will become clear in the following) it alone cannot be used to
discuss continuity and convergence. Roughly speaking we must add some
structure to it that allows us to introduce the notions of convergence and
continuity. Apropos of this we now define a “normed” vector space.

Definition 3.4: 4 real (complex) vector space V is said to be normed if
there is associated with every element v of V a unique real number ||t|| which
has the following properties:

(N1) vl = 0; ||f| = 0 if and only if v=0
N2)6 el = |a] ||o|| for every real (complex) number o
(N3) o1+ val| <|lvil| +lvdl for all vy, v.EV

The number ||| is called the norm of v.

It is straightforward but tedious to verify that both the real and complex
numbers satisfy these axioms with the norm taken to be the absolute value.
Proposition (V3) is known as the triangle inequality since this is a generaliza-
tion of that classical concept from Euclidean geometry. This will become clear
subsequently when we introduce an important and familiar type of normed
vector space.

From an elementary standpoint a vector is taken to be a quantity having
both magnitude and direction. When this outlook is adopted, vectors are usu-
ally visualized as arrows in a three-dimensional space with the tail of the arrow
at the origin 0. The direction of the arrow is then the direction of the vector

¢ |a| denotes the absolute value of the number a.
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and the length of the arrow represents the magnitude of the vector. The. point
at the head of the arrow completely specifies the vector. Therefore, one can
say that this point is the vector. (This is done in the next definition.) In three
dimensions, a vector r is just a point with coordinates x, y, and z. Vectors are
added by the parallelogram law which amounts to adding the coordinates of
the points corresponding to the vectors. Thus, if the head of the vector r; is at
the point x;, y;, z; and the head of the vector r; is at the point x2, ¥z, 22, then
the head of the vector r; + r; is at the pointx; + %2, ¥1 + ¥2, 21+ 22. The product
of the vector r with a real number c is defined to be the vector whose head is
at the point cx, cy, and cz. The dot product of the two vectors r; and r; is de-
fined to be the real number x;x2 + y1y2 + z1z2. The magnitude of the vector ris
(x4 92+ 22)42, In the next definition these geometric concepts are formalized
by a set of postulates and extended to spaces with an arbitrary number of
dimensions called Euclidean spaces.

Definition 3.5: For each positive integer k, the k-dimensional Euclidean
space is the set R* of all ordered k-tuples of the form

x={x1, X2, . . ., X)

where x1, X2, . . ., xx are real numbers, with the operations of addition and
scalar multiplication between all the elements of R* defined as follows: Let

x= (X1, . . ., Xx)
and

Y=(Vts o - - Vi)

be any two members of R* and let o be any real number. Put

xt+y=(u+n . .., mty (3-1)
and
ax=(axi, . . ., Qx) (3-2)

It is clear that x+y € R¥ and ax € RX. We call the first of these operations
addition and the second scalar multiplication. We further define the zero
vector or origin of R* (denoted by 0) to be the k-tuple

0=40,. . .,0) (3-3)

In addition, we associate with any two elements x and y of R* the real number
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x * v defined by
k
x-y= 2 XiYi (3—4)
=1

and with any element x of R* we associate the nonnegative number |x| defined by

k 1/2
lxl=(2x%> = (x-x)12 (3-5)
i=1
If x=(x1, x2, . . ., xx) is any element of R¥, we call x a vector or a point
of R¥ and the numbers xi, %2, . . ., xr its coordinates. Relation (3—4) is

called the inner product.

We shall denote a vector in R* by using boldface type for the letter, and
we shall denote its coordinates by the same letter with subscripts ranging from
1 to k.

Now that the Euclidean spaces have been introduced, we still must show
that these spaces are in fact normed linear spaces. With the definitions of
addition given by equation (3—1) and of scalar multiplication by equation (3-2)
and with the zero vector defined by equation (3—3), it is an easy matter (inas-
much as the real numbers satisfy the associative, distributive, and commuta-
tive laws) to verify that the postulates (Al) to (A4), (M1) and (M2), and (D1) and
(D2) of Definition 3.1 are satisfied by the members of R%. We therefore conclude
that the k-dimensional Fuclidean space R* is areal vector space. Before showing
that in addition R* is a normed linear space, it is convenient to prove the next
theorem.

Theorem 3.6: Suppose that x, ¥ € R* and that « is a real number.

Then,
@ |x[=0
(b) |x|=0 if and only if x=0
©  |ox|=]a| |«

@ |-yl <« ||

€  [|x+yl <|x[+]y
Proof: Parts (a), (b), and (c) are obvious. To prove part (d) we first note that,
from the definition of inner product, (x+v)-z=x *z+y ' z. Assume neither
|| nor || nor x - y is zero for otherwise, by part (b), x - y=0 and the inequality
is trivial. Now from part (a) we have, for any real number A,

355-525 O-70—3 27
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O0<|x—Ny]P=(x—Ny)-(x—Ay)=x-x
+ Ay y—2Ax - y= |22+ N|y|2—2\x - y

Since A is arbitrary, we can set

x| =]
lyl -
and we have
2
o la?
|]®
Hence, |
|
0= 2lx|2—2 ,—y'l— Ix -yl
or

|- y| < |x| |y

and part (d) is proved. It follows from part (d) that

lxtylP=(x+y) (x+ty)=x-=x
+2x - y+y-y < |x*+2x] [y + |y*= (lo[+ [51)*
so that part (e) is proved.

Comparing parts (a) to (c) and (e) of Theorem 3.6 with (N1) to (N3) of
Definition 3.4 now shows that indeed equation (3-5) defines a norm on R¥
and so makes R* into a normed linear space.

We define R! to be the set of all (finite) real numbers. We have already
pointed out that R! is a real normed linear space if we take the norm of any
element in R! to be its absolute value.

It is clear from the definition of the direct product given in chapter 1 that

RE=R'XR'X . . . XR! (3-6)

taken k-times
It also follows from the discussion at the end of chapter 1 that, for any k=2,
Rk=RsX Rk~s  1<ss<k—1 (3-7)

For k=2 and k=3 the definitions of equations (3-1), (3-2), and (3—4)
just correspond to our usual concepts of vector addition, multiplication of a
vector by a scalar, and dot product, respectively. Furthermore, equation
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(3-5) is the definition of the magnitude of a vector. What has been done here
is that our usual geometrical concepts of vector addition, etc., have been for-
malized into a set of algebraic rules or postulates, which was used to define a
mathematical structure. Looked at in this more abstract setting, the spaces
R* then become natural generalizations of the three-dimensional Euclidean
space.

We remind the reader that a point in the plane can now be represented
in either of two ways. First, it can be represented as a vector in R2—that is,
as the ordered pair x= {(x;, x2) where x; and x, are real numbers. Second, it
can be represented as the complex number z= x; + ix, where i= V—1.

Geometrically speaking, when the real part of z is the same number as
the first element of the ordered pair ¥ and the imaginary part of z is the same
number as the second element of the ordered pair x, then x and z refer to the
same geometric point. If y=(y1, ) and n=1y;+iyz, then for any real num-
bers @ and 8

v=ax+ By = (ax1+ By1, axz+ Bys)

and
E=az+ Bn= (ax;+ay1) +i(oxe+ By:)

which defines £. This shows that the complex number ¢ represents the same
point as the vector v, so that it makes no difference which formalism we use
to carry out these algebraic operations. They are entirely equivalent. It is
clear from equation (3-5) that |x|=|z| is just the absolute value of the com-
plex number z in the usual sense.

Essentially then, for every operation that can be performed in R2?, there
is an equivalent operation with complex numbers that will yield the same
result when the complex numbers and the vectors in R? are identified with
each other in the manner indicated. So all the results obtained below for
Euclidean spaces have an immediate counterpart for complex numbers.”

We shall denote the real part of a complex number z by % z and the
imaginary part by %. z. The set of all complex numbers is usually denoted

by C.

7In fact, the complex numbers are a field, whereas R? is only a linear space. This in particular implies that mul-
tiplication is defined between members of the set of complex numbers. ‘
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CHAPTER 4

Functions and Relations

It appears that the word “function’ was first used by Descartes in 1637
to refer to a positive integral power of some real variable. Afier a considerable
period of time, the term was taken up by Leibnitz to refer to any numerical
quantity connected with a curve. The concept of function was next modified
by James Bernoulli who regarded it as being any algebraic expression involving
a single variable. Euler generalized this concept of function to include algebraic
expressions involving any number of real variables and any expression that
could be generated from algebraic expressions by the operations of compo-
sition, quadrature, and forming infinite series. Euler did not realize the full
implications of this definition, and it was Fourier who demonstrated that
much more general functions than Euler had thought possible arose as the
sums of infinite series. Attempts to give a definition which was meaningful
for this large class of relations led Dirichlet to give a definition of function
which no longer required that any explicit formula be involved in the definition
but only required that a rule of correspondence between numbers be given.
He coined the terms ‘“domain” and “range,” and he was the first to impose
the restriction that the rule of correspondence assign only a single number
to each number in the domain of definition ‘of the function. This is essentially
the concept of function that is used in elementary calculus today. Dirichlet,
however, still required that a function relate numerical quantities, and he did
not seem to apply the term function to the rule of correspondence itself.

With the introduction of set theory into mathematics, the term function
has come to refer to any rule which associates with an element of a given
set a single element of another set. Finally, attempts to formalize mathematics
entirely in terms of set theoretic concepts have led many modern authors to
define functions in terms of certain sets of ordered pairs.

Before giving a precise definition of function, let us consider an example
in which D denotes the set of all books in the NASA Lewis library. Let E be
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the set of positive integers. Then we can associate a unique member of E with
each book in D, namely, the number of pages which that book contains. This
scheme defines a function from the set D into the set E.

Definition 4.1: If D and E are any two sets and there is some scheme
or rule whereby, with each element x€D, there is associated a unique ele-
ment yEE, then this scheme is said to be a function f from D into E. The
element yEFE that is associated in this way with an element x€D is denoted
by f(x) and is called the value of f at x. The set D is called the domain of f.
The notation f: D— E means that f is a function from the set D into the
set E. The function fis said to be defined on D.

The sets D and E appearing in this definition may of course both be the
same set. We shall sometimes say that f is a function from D to F instead of
from D into E.

In various contexts the terms mapping, transformation, and operator
are used for function. We emphasize the fact that a function must associate
a single value with each member of its domain. According to Definition 4.1,
the function f is completely specified only when the rule connecting all the
elements of a set D with the elements of a set E is given. It is important in
modern mathematics to think of the entire function f as a single object and
to always make a distinction between the function f and any one of its values,
say f(x).

If the domain of a function fis a subset of the direct product of two sets,
say A and E, it is common practice to denote the value of f at the point
(a, e) EAXE by f(a, e) instead of by f({a, e)). The function f is usually
referred to as a function of two variables. Hence a function of two real variables
is a function whose domain is a subset of R*= R! X R'. More generally a func-
tion of n variables is one whose domain is a subset of the dire"ct product of n
sets, say A1, . . ., An, and its value a point {a;, . . ., an) € X A;is denoted
be(al’ MRS an)- =1

If f: D— E (sometimes read “‘f maps D into E”), the set {(x,f(x)) |x € D}
is called the graph of the function f. In modern writing a function is frequently
defined to be its graph. For our purposes it makes no difference which of
these concepts is used as the definition of function.

It is not consistent with Definition 4.1 to define a funection f from the set
of all real numbers to the set of all real numbers by the scheme

flx)=tan"! x (for every real number x) (4-1)
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the reason being that tan~! associates more than one real number with each
real number x and therefore does not lead to an unambiguous scheme. It is,
however, consistent with Definition 4.1 to define a function f from the set of
all real numbers to the set of all numbers lying between — T and Z by equation
(4-1). It is also not in accord with Definition 4.1 to define a function f from
the set of all real numbers to the set of all real or even extended real numbers
by the scheme

f(x) =% (for every real number x) (4-2a)

for £(0) is not defined by equation (4-2a)® and a function must be defined at
every point of its domain. A function into the extended real numbers is, how-
ever, defined in a proper way if we replace equation (4-2a) by

1 for every real number x # 0

fe)=9" (4-2b)
+ oo for x=0

This is contrary to the older usages of the term function which allowed equa-
tion (4—2a) to define a function that was said io have an infinite discontinuity
at x=0.

For any two sets A and E, the function f: A X E—> A defined by

SfUx, »)=x  forall{x,y)EAXE

is sometimes called the first projection in 4 X E. Similarly, the function

g:AXE— E defined by
gz, y))=y  forall{x, y) EAXE

is sometimes called the second projection in A X E.
Suppose D and E are any two sets and f:D— E and g:D— E. Then,
according to our definition, f and g are the same function if and only if

flx)=g(x) for every x€D

In this case we write f=g.
In the following definition, the notation d x is used to mean “there exists

29

an x.

8 This of course follows from the fact that division by zero is not defined even in the extended number system.
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Definition 4.2: If f:D— E and A is any subset of D, the image of A
under f is defined to be the set f(A), which consists of all yEFE such that
y=f(x) for some x € A. More formally, the image of A is the set

f(A)={y€E|(Ax€A) for which y=f(x)}

The set f(D) is called the range of f. It is clear that, in general, f(D) € E.
If it happens that f(D)=FE, then f is said to map D onto E and the function f
is said to be a surjective function from D to E.°

In other words, a function f:D— E is surjective, or onto, if and only if,
for every yEE, there is some x&€D such that y=f(x). Notice that the state-
ment “f maps D onto E” is more specific than the statement (cf., Definition
4.1) “f maps D into E.” The concept of image is illustrated in figure 4-1.

flx)
Iy

Graph of f

N

N
f(A) )

V2727777,

A

LLLLLLLLLLLL) » X
F7T77TI7777 g

FIGURE 4—1.—1Image of a set of real numbers under a real valued function.

If D and E are both sets with a finite number of elements, it is obvious
that if E has more elements than D, the mapping f: D — E cannot be surjective.
For example, the function g : 4—> G whereA=1{a, b, ¢} and G={1, 2} defined
by

9 The property of being surjective is not a property of f alone but a property of f and E.
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gla)=1
g(b)=2
glc) =2

is surjective, whereas the function & : G— A4 given by

h(1)=0
h(2)=c

is not surjective. These two functions are illustrated in figures 4—2 (a) and (b).

A A
G G
a.\ ea
bo\ \01 le »>oh
ce %69 2e >0 C
(a) (b
(a) g:4—6C. (b) h :G—> A.

FIGURE 4-2.—Schematic representations of g and A.

Clearly any function f: D— E may be considered as being a surjective
function from D to f(D). Also if A; and A» are any two subsets of the domain
D of f; then A; C A, implies f(A;) C f(Az). Finally it is an immediate conse-
quence of Definition 4.2 that (@) =@.10

The function f from the set of all real numbers to the set of all real numbers

defined by

f(x)=2x° for all real numbers x

is surjective. However, the function g from the set of all real numbers into the
set of all real numbers defined by

WIf f:D—E, ACD, and E is a subset of the real or extended real numbers, it is common practice to write
supAf(x) and inf f(x) in place of sup f(4) and inf f(4), respectively.
x € xEA

35



ABSTRACT ANALYSIS
g(x) =x> for all real numbers x

is not surjective because, given any negative number y, there is no real number
x for which y=x2

Definition 4.3: For any two sets D and E, the mapping induced by
a function f:D— E is defined to be the function / from the collection Zp of
all subsets of D into the collection % of all subsets of E such that, for
each subset A € Pp, the value of the function /at A is f(A), the image of A
under f.11

The symbol f is also used for the induced mapping / and it is usually
necessary to infer from the context which function f refers to. It is clear, from
Definition 4.2, that the mapping induced by a function f: D — FE is surjective
if and only if its range is the collection of all subsets of E. The following ex-
ample serves to illustrate some of these concepts.

Let D={a, b} and E={1, 2}. The function f: D — E defined by

1 forx=a
flx)=
1 forx=5b

is not surjective. This function is illustrated in figure 4-3. The subsets of D are
@ {a} {b} {a,b}
o {1y {2} {1,2}

The values of the induced mapping are
f@)=0  f{ehH={1}
flab)={1}  f({a, bh={1}

and this mapping, like the function £, is also not surjective because its range
does not include the subsets {2} and {1, 2} of E.

and the subsets of £ are

" The collections ) and 2 are called the power sets of D and E, respectively.
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a @

o/

b

/

).1

® 2

FIGURE 4—3.— Schematic representation of f:{a, b} = {1, 2}.

Definition 4.4: If f:D—E, and A is any subset of E, the inverse
image of A under f is defined to be the set f~1(A), which consists of all points
x € D for which f(x) € A. In symbols, the inverse image is the set

fHA)={x € D|f(x) € 4}

If the inverse image under f of every one element subset of E contains at most one
element of D, then fis said to be injective or fis said to be a one-to-one map-

ping from D to E.

fix)

Graph of f
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LLLLLL,
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FIGURE 4—4.—Inverse image of a set of real numbers under a real valued function.
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The concept of inverse image is illustrated in figure 4—4.

Clearly, if a function f: D—FE is injective, there cannot be two distinct
points of D, say x; and x2, such that f(x)=f(x:), for otherwise the inverse
image under f of the one element set {y} where y=7f(x;) =f(x.) would contain
more than one element, namely, 5 and x2. On the other hand, if for any two
points of D, say x; and xz, x; # x2 implies f(x;) # f(x2), then the inverse image

of any one element subset {y} of E can have at most one point for, if f~1({y})
={x1, %} and x; # x, then we would have y=f(x;) and y=f(x2) which is
impossible since f(x1) # f(x2). Hence, we conclude that a function f: D—E
_is injective if and only if, for any x,, x. € D, x; 7 x implies f(x:) 7 f(x2).

We can express this last concept in still another way. To this end, suppose
that p and ¢ are two propositions (recall that propositions are either true or
false but not both). It was shown in chapter 1 (see p. 2) that the two statements
“whenever the proposition p is true, then the proposition ¢ must also be true”
and “whenever q is false, p must also be false” mean the same thing. They are
known as contrapositives of one another. Now, we saw that a function fis injec-
tive if and only if, for any two points x;, x, in its domain, x; # x, implies
f(x1) # f(x2). This statement can be replaced by its contrapositive and we may
say that f is injective if and only if f(x,) =f(xs) implies x,= x> for any x1, x2
in the domain of f. Situations often occur in the proofs of theorems when it
is easier to prove the contrapositive of a statement rather than the statement
itself.

We mention in passing that, as in the case of induced mappings, the
inverse images of the various subsets of E under a mapping f are the values of
a function from the collection of all subsets of E into the collection of subsets
of D. '

We return to the last example in whichD={a, b}, E={1,2},andf:D—E

is defined by 1 ‘
_ orx=a
fix) { 1 for x=15

The inverse images under f of the subsets of E are
f10)=0 1{2hH=0
A {1)=A{a, b} ({1, 2})={a, b}

The function f is not injective since f~1({1}) contains more than one element

of D. Also f(a)=f(b), but a # b.
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If D and E are any two sets, f: D— E, and H; and H; are any two subsets
of E, then clearly H, C H; implies f~'(H;) C f~'(H.).

Iff:D— F and y € E, it is common practice to write f~1(y) in place of
f~1'({y}). We shall avoid this convention here since it can_easily be confused
with the inverse function which is defined subsequently.

Before giving this definition, however, it is helpful to establish the follow-
ing properties of injective functions.

If f: D— E is injective, then

(a) For each y € f(D), there is one and only one x € D such that y=f(x).
This is an immediate consequence of the facts that f(D) is the range of f and
that f is injective.

(b) For every x € D, thereis ay € f(D) such that y=f(x). This is a conse-
quence of the fact that f(x) € f(D) for everyx € D.

(¢) x1=2x2 implies y1=1y, if y1=f(x1) and y2=f(x2). This is a consequence
of the fact that the value of a function at a given point of its domain is unique.
It follows from (a) that each element y € f(D) is uniquely expressible in the
form f(x) for exactly one element x of D. We can therefore define in a natural
way a mapping from f(D) into D by taking x as the value of this mapping at the
point y=f(x) € f(D). It follows from (b) that this mapping is onto D and (c)
shows that this mapping is injective. In view of these remarks we make the
following definition.

Definition 4.5: If f : D— E and f is injective, the function f~1 : f(D)—> D
which associates, with each y € f(D), the element x € D such that y=f(x) is
called the inverse mapping or simply the inverse of f. If a mapping f is
injective, its inverse is said to exist.

. The relation between the mapping f and f~! is suggested by figure 4-5.
Notice that the domain of f~! is the range of f and the range of f~! is the
domain of f. Also notice from the definition that if the inverse of a given map-
ping exists, then it is unique. In addition, since the inverse mapping is injective
and since x=jf"1(y) implies that y=/f(x), it is clear that the inverse mapping
of f~1(i.e., (f~1)7!) is just f.

Since the inverse image of a set and the inverse mapping are both denoted
by f~1, it is sometimes necessary to exercise some caution so that these two
meanings are not confused.
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FIGURE 4-5.—Relation between an injective function and its inverse.

Again consider the sets D={a, b} and E={1, 2}. This time define the
function g:D — E by
gla)=2

g(b)=1

This function is evidently both surjective and injective so the inverse function
g~ ! exists and its domain g(D) is equal to E. Thus, we have

g (1)=b
g (2)=a

This function is shown in figure 4—6.

It is clear that, if D and E are any sets, each containing only a finite number
of elements, and D contains fewer elements than E, no surjective function from
D to E can be defined whereas, if D contains a larger number of elements than
E, no injective function from D to E can be defined.

Definition 4.6: A function which is both surjective and injective is said
to be bijective or a bijection.
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ao\></ol a o\></.1

b°/ \.2 b .‘/ S~ )
(a) (b)

@) g :{a, b} — {1, 2}. (b) g7 : {1, 2} = {a, b}.

FIGURE 4—6.— Schematic representations of functions g and g~1.

When a function f: D— E is a bijection, the following are true:

(a) The fact that fis a function implies that a single element of E is asso-
ciated with each element of D.

(b) The fact that f is surjective implies that every element of E is asso-
ciated with at least one element of D.

(¢} The fact that f is injective implies that every element of E is asso-
ciated with at most one element of D.
Thus, every element of E is associated with exactly one element of D and there
is no element of D which is not associated with some element of E.

If D is any set, the mapping i : D— D which associates each element of
D with itself is called the identity map of D. This mapping is clearly a bijection.

Clearly if f: D— E is a bijection, its inverse mapping f~! is a bijection
from E to D. Consider, for example, the function g : D— E where D and E are
subsets of the real numbers, and g is defined by

g(x) =x% forallx € D

(a) If D and E are both taken to be the set of all nonnegative numbers,
then g is a bijection and its inverse g! is defined on E by

g (y)=Vy forally e E

(b) If D is taken to be the set of all nonnegative numbers and E is taken to
be the set of all real numbers, then g is injective but not surjective. The domain
of the inverse is still the set of all nonnegative numbers.

(¢) If D is taken to be the set of all real numbers and E is taken to be the
set of all real numbers, then g is neither surjective nor injective. Its inverse
does not exist.
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There are a number of relations connecting the images of sets under

mappings and the binary set operations. A few of the more common ones are
listed in table 4—1.

Table 4-I. — Relations Connecting Images, Inverse Images, and Binary Set Operations

[f:D—E;A,A,4A: C D;H, H,, H: C E]

............................. FHHY = (fH{H))*

fHf4)) D4 fUHH)) CH

fld1 U o) =f(d1) U f(4s) FHH U Hy) =f7(H1) U f(H)
fldi N Ap) Cf(A) N f(ds) fHHE O H) =f1(H) N f(HR)

In order to demonstrate the procedures involved in obtaining the relations
in table 4-1, we shall prove that f(f~*(H)) C H. To this end, let

A=f(H)={x €D |f(x) € H}

Then
N ) =fU)=1y € E|(Ax € A) for which y=f(x)}

Now, if y is any point of f(f~1(H)), this implies y=f(x) for some x € 4. But
x € A means that f(x) € H; hence y € H. Since ¥ was any point of f(f~1(H)),
we conclude that f(f-'(H)) C H.

A relation typical of those listed in the third and fourth rows is proved in a
more general setting in chapter 5. The other relations listed in the table are
obtained in a more or less similar fashion.

To see why the equality sign does not hold for the entry in the fourth row,
first column, suppose A, and A, are disjoint sets. Then f(4; N 4,)=. On the
other hand, if f is not injective, there are points x; # x2 of D such that
f(x1) =f(x2). Suppose that 4:={x;} and A>={x2}; then, f({x:} N {x:2}) =0
but f(4:) N f(Az) #0 since f(x:) € f(4:) N f(A4s). The next theorem shows
when the inclusion signs (C and D) in the relations listed in the second row
of table 4-1 can be replaced by equal signs.
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Theorem 4.7: Let f:D— E.
(a) fis surjective if and only if f(f ~*(H))=H for every set H C E.
(b) fis injective if and only if f~1(f(A))=A for every set A C D.

Proof: Part (a). Suppose f is surjective. Put

A=f""(H)={x € D|f(x) € H}

Let ¥ be any point of H: Since fis surjective, y=f(x) for some x € D but 4 is the
set of all x for which f(x) € H. Hence x € 4. Now f(Ad)={y €E E|(dx € A)
for which y=f(x)} and this shows that y=f(x) € f(4). Since y was any point
of H we conclude that H C f(A)=f(f~'(H)). Combining this with the relation
given in the second row, second column of table 41 shows that f(f~!(H))=H.

Conversely, suppose that f(f'(H))=H for every H C E. Let y be any

point of E. Then f(f~1({y}))=1{y}. Since f(0) =, we conclude that f~1({y})
# (). Hence there exists at least one x € D such that y=f(x); thatis, y € f(D).
Since y was any point of E, we conclude that E C f(D). Hence, E=f(D) and
so f is surjective.

Part (b). Suppose f is injective. Set
H=f(A)={y € E|(dx € 4) for which y=£(x)}
Then
[HfA)=f""(H)={x € D|f(x) € H}

Let x; be any member of f~1(f(4)). Then x; € f~'(H). Hence, f(x,) € H and,
because H=f(A), there exists anxs € A such that f(x;)=f(xz). It now follows,
since f is injective, that x; = x2. Since x; was any point of f~1(f(A4)), this shows
that f~1(f(4)) C A. Combining this with the entry in the first column, second
row of table 4—1I shows that f~1(f(4))=A.

Conversely, suppose f~1(f(4))=A for every A C D and suppose for any
two points x1, x2 € A that f(xi)=f(x2). Now f(x2) € f({x2}) and hence
f(x1) € f({x2}). Since

[ {x})) ={x € D|f(x) € f({x})}

we see that x; € f~1(f{x2})) and by assumption, f~1(f({x}))=1{x.}. Hence,

x1=2x2 and this shows that f is injective.
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Theorem 4.8: Let f:D—E.

(a) If fis injective, then the mapping induced by f is an injective function
from the collection of all subsets of D to the collection of all subsets of E.

(b) If f is surjective, then the mapping induced by f is a surjective function
from the collection of all subsets of D to the collection of all subsets of E.

(c) If f is bijective, then the mapping induced by f is a bijective function
Jrom the collection of all subsets of D to the collection of all subsets of E.
Proof: Part (a). Suppose A; and A, are subsets of D such that f(4,) =f(A4.).
We need only show that this implies that 4; = A4, to prove that the induced map-
ping is injective. Hence suppose f is injective. If x is any point of 4, then
f(x) € f(4))=f(A4:)={f(y)|y € A2}. This shows that for some y € 4.,
f(x)=f(y) and since f is injective this shows that A4, C 4,. The reverse
inclusion is obtained in exactly the same way by picking a point in A,. Hence
Al :Az.

Part (b). Suppose now that fis surjective. We must show that the mapping
induced by f is onto the collection of all subsets of E. That is, we must show
that, if H is a subset of E, then H=f(A) for some subset 4 of D. Since fis sur-
jective, Theorem 4.7(a) shows that this requirement is met if we take 4 to be
the set f~1(H).

Part (c). This follows immediately from (a) and (b).

Definition 4.9: If f:D—FE and A C D, a function g:A—E is said to
be the restriction of fto A and f is said to be an extension of g to D if for
every x € A, glx)=f(x).

It is clear that the restriction of a function to a given set is unique, but
there is no natural way of defining a unique extension of a given function.
We see that if H is any subset of 4 and g is the restriction of f to H, then
f(H)=g(H). Clearly the restriction of any injective function is also injective.
If A is a nonempty subset of a set D, the restriction to A of the identity map of D

is denoted by js4 and is called the natural injection of A into D. It is not hard
to see for any E C D that

JiME)=ENA (4-3)

Definition 4.10: Suppose that there is a scheme whereby some of the
elements of a given set A are related in some manner to other elements of A.
If an element x €A is related to an element y € A by this scheme, we write
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x ~y. In addition, suppose this relation between the elements of A, which is
also denoted by ~, has the following properties:

(a) For every x € A, x ~ x.

(b) x ~ v implies y ~ x.

(c) x~ v and y ~ z implies x ~ z.

Then ~ is called an equivalence relation in 4.

For example, suppose the set 4 is a family (of people). Then “is the same
age as” is a relation between the members of this set which is an equivalence
relation. As another example, consider the set of all triangles in a plane. Then
each of the following is an equivalence relation in this set:

is similar to

is congruent to

has the same area as

has the same perimeter as

A relation which satisfies (a) is called reflexive, one which satisfies (b) is
called symmetric, and one which satisfies (c) is called transitive. Hence,
equivalence relations are sometimes called SRT relations.

If A, D, and E are sets and we are given two functions f: 4— D and
g:D— E, it is possible to define in a natural way a mapping from A4 into EF in
terms of these two functions. For if x is any point of 4, f(x) is a uniquely de-
termined point of D. Since g is defined on D, g(f(x)) is a uniquely determined
point of E. Thus the scheme which associates with each x € 4 the unique
element g(f(x)) of E is a function from A into E. Apropos of these remarks
we make the following definition.

Definition 4.11: If A, D, and E are sets, f:A— D and g:D— E, the
function h : A— E defined by

hix)=g(f(x)) forallx € 4

is called the composition of g and f and is denoted by g of.

It should be clear that the composition of two mappings g and f can only
be defined if the range of f belongs to the domain of g.

In order to illustrate the definition, let A= {w, x, v, z}, D={1, 2, 3}, and
E={p, q}, and let f: A— D and g: D— E be defined, respectively, by
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flw)=2
flx) =1
fly)=1
f(z) =3
and
g(l)=gq
g(2)=p
g8(3)=gq

The composition go f is obtained by the following calculation:

gof(w)=g(f(w))=g(2)=p
gof(x) =g(f(x)) =g(1)=q
gof(y) =g(f(y)) =g(1)=gq
gof(z) =g(f(2)) =g(3)=gq

We have in fact already encountered an example of the composition of
two mappings, for Definition 4.5 shows that if f: D— E and f~! exists, then

(f(x))=x« for everyx € D

The definitions of composition and of equality of two mappings now show that
frof=i

where i is the identity map of D.

If f:D— E, A is a nonempty subset of D and j4 is the natural injection of
A into D, then feoj, is the restriction of fto 4.

Iff:A— D, g:D— E, and h=gof, it is clear that h(4) =g(f(4)) so that,
in particular, if g and f are both surjective, f(4)=D and g(D)=E. Hence
h(A)=E, which shows that & is also surjective.

If g and f are both injective, then, for any xi, x2 €A, x1 # x2 implies
f(x1) # f(x2); since g is also injective, this in turn implies g(f(x1)) # g(f(x2)),
that is, A(x1) # h(xz), which shows that & is also injective. Thus, if f and g are
bijections, then A is a bijection from A to E.

Definition 4.12: If A and D are two nonempty sets and there exists a

46



FUNCTIONS AND RELATIONS

bijective mapping f from A to D, then it is said that A and D can be put into
one-to-one correspondence or A and D are said to be similar or to have
the same cardinal number. This is denoted by A ~ D.

We recall that the identity map of 4 is a bijection from A4 to 4. Also iffis a
bijection from A4 to D, then f~1 is a bijection from D to A. If f is a bijection from
A to D and g is a bijection from D to E, then h=go f is a bijection from 4 to E.
These remarks show that one-to-one correspondence is an equivalence relation.
Apropos of this discussion we make the following definition.

Definition 4.13: A nonempty set A is said to be finite if, for some integer
n,A~{1, 2, ..., n}; otherwise, A is called infinite. The empty set is also
considered finite.

It is clear (see remarks preceding Definition 4.6) that any two sets with a
finite number of elements can be put in a one-to-one correspondence if and only
if they have the same number of elements. We cannot, however, attach any
meaning to the statement that two infinite sets have the same number of ele-
ments but the concept of one-to-one correspondence has meaning for infinite
sets as well as finite sets. This is therefore taken as the appropriate generaliza-
tion of the concept of number of elements in a set.

Definition 4.14: Let J be the set of all positive integers. A nonempty set
A is said to be countable if A is either finite or A ~ J. If a set is not countable,
it is said to be uncountable. Countable sets are alternatively called enumer-
able or denumerable.

For example, the set Z consisting of all the integers is countable. To see
this let £: J— Z be the mapping defined for each n € J by

g n even
f(n)=
oD odd

2

We shall show that fis a bijection. It is clear that f is one-to-one. To see that it
is surjective (or onto), let i be any integer. If i is positive, we can always find a
positive even integer n such that n=2; and, for this n, f(n)=1i. If i is negative
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or zero, we can always find a positive odd integer n such that n=1—2{ and, for
thisn, f(n)=1.

Clearly no finite set can possibly be put into one-to-one correspondence
with one of its proper subsets. We have just shown that this is possible, at least
for some infinite sets. As it turns out, every infinite set can be put into one-to-one
correspondence with at least one of its proper subsets.

Definition 4.15: A4 function f from the set J of positive integers into a
set X is called a sequence in X or, more simply, a sequence. The range of f
is called the range of the sequence. The values of f are called the terms of the
sequence.

The values of any function defined on the set J have a certain order im-
parted to them as a consequence of the ordering of the set J by the symbols
<, >, and =. A function f defined on J is called a sequence only when the em-
phasis is to be on the values of f and this ordering. Thus, conceptually, a
sequence is usually thought of as a set whose members are listed in some
definite order. In line with this idea, it is customary to denote the terms of the
sequence by x, (of course, any letter may be used in place of x) instead of
by f(n) for each n € J. Since the emphasis is to be on the values of the func-
tion f, it is also customary to denote the sequence f by {x,}, which is an abbrevi-
ation for the range of f, {xu|n € J}. Sometimes the even more intuitive nota-
tion xy, X2, . . . is used to denote the sequence. This latter notation em-
phasizes the ordering of the terms of the sequence. Sometimes the term se-
quence is applied to a function whose domain is a finite set of consecutive
integers. This is not done here! However, occasionally a sequence will be
defined as a function on the set of nonnegative integers instead of on J. Thus,
we only call a function a sequence if its domain is J or the set of nonnegative
integers. Since the function f need not be injective, it is clear that the range of
a sequence may be a finite set, or it may even consist of a single point.

The proof of the next theorem is based on a principle called mathematical
induction. This principle can be stated as follows:

Suppose that with each n € J there is associated some proposition sn.
Suppose further that s, is true and that for any positive integer k, sk is true
whenever sk is. Then we can conclude that sy is true for everyn € J.

We can justify this principle by using the simple fact (introduced in
chapter 2) that every nonempty subset of the positive integers contains a
smallest member. We shall not, however, stop to do so here.
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As a simple illustration of how a proof by induction can be carried out, let
us verify that the formula

2+44+. . .+2n=n(n+1) (4-4)

is true for every n € J. (The term on the left denotes the formal sum of n
terms.) To this end, for each n € J, let s, be the proposition that formula (4—4)
is correct. Clearly s; is true since 2=1(1+1). Now suppose s is true. Then
adding 2(k+1) to both sides of (4—4) with n=1Fk we see

24+4+. . A+ 2%k+2(k+1)=k(k+1)+2(k+1)=(k+1)[(k+1) +1]

and so we see that for every positive integer k, sip+1 is true whenever s is.
The principle of mathematical induction now tells us that formula (4—4) is
true for every n € J.

The principle of mathematical induction can also be used to define func-
tions on J. This procedure is known as a recursive definition of the function,
and it tells us that we can define a function f by giving f(1) together with a
procedure for calculating f(k+1) from f(k) for every k € J. To see how this
type of definition is justified by the principle of mathematical induction, we
need only let, for each n € J, s, be the proposition that f(n) is defined by this
procedure. Then clearly s, is true and sk is true whenever s is. Hence, the
principle of mathematical induction tells us that s, is true for everyn € J or

that f is defined on J.

Theorem 4.16: If I is an infinite subset of J, then J ~ L.
Proof: In order to prove the theorem we shall construct a bijection f from J to
I. To this end we define for each nonnegative integer k the set Jx by

Jk={je.]|jsk}

Clearly Ji is finite. Therefore Jx N I is also finite. Now since I is infinite,
for any k, the set I—Jx cannot possibly be empty. It follows from this (since
Jr contains all the positive integers which are less than or equal to k and I is a
subset of the positive integers) that I contains an integer greater than £ for each
nonnegative integer k. With this in mind we can define the function f recursively
as follows: Let f(1) be the smallest member of I. If f(n) is defined for any
n € J, there exists an integer in I greater than f(n) and so f(n+1) can be
defined as the smallest integer in I which is greater than f(n). In this way f(n)
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can be defined recursively for all n € J. Hence, by proceeding in this manner,
we define f on J.

By construction f(n+1)>f(n) for every positive integer n. If f(n+p) > f(n)
for any positive integer p, then f(n+p+1)>f(n+p) > f(n). Hence it follows
by induction that f(n+p) > f(n) for every positive integer p. Now if ny, n, € J
and n; # n», then we can assume that the notation has been chosen so that
n; > ng. Thus, if we set m=n;—ns, then m € J and ny=m -+ n,. Therefore

f(n)=f(m~+nz) > f(n,)

This shows that f(n,) # f(n2) whenever n; # nq; that is, f is injective.

It remains only to show that f is surjective. To do this we shall prove that
f(J)=1. In order to obtain a contradiction suppose that f(J) # I. Hence the
set I—f(J) of positive integers is not empty and so it has a smallest element,
say q.

Clearly g cannot be the smallest element of I because if it were, it would
imply that g=f(1) € f(J). Thus/ contains at least one integer less than g and
therefore I N Jo—1 #@. Hence I N J,_; (the set of all integers in I which are
less than ¢) is a finite nonempty set of real numbers and so it contains a largest
member, say r. Clearly r < qg—1 < q and ¢ is the smallest member of I which
is larger than r. (This follows from the fact that r is the largest integer in  which
is less than g and so there can be no integers in [ lying between r and ¢.) Since
q is the smallest member of I which is not in £(J), it follows that r € f(J). This
shows that there exists a positive integer s such that r=f(s). It now follows
from the definition of fthat f(s+1)=gq. Thus ¢ € f(J) and ¢ € I—f(J). Since
this is impossible we conclude that the assumption f(J) # I is incorrect. Hence
f is surjective.

Corollary 1: Every subset E of a countable set A is countable.

Proof: The proof is trivial if E is finite. Hence assume that E is infinite.
Thus A4 is infinite and countable and so there exists a bijectionf: A— J. Let g
be the restriction of fto E. Clearly g is injective since fis. Thus g is a bijection
from E to g(E). In other words E ~ g(E). Since E is infinite, it is clear that
g(E) is also. Theorem 4.16 now shows that J ~ g(E). By using the symmetric
and transitive properties of ~, we see that £~ J. Hence E is countable.

Corollary 2: 4 nonempty set A is countable if and only if there is an
injection from A to J.
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Proof: If A4 is countable, then, by definition, there is a bijection from A to a
subset of J. This mapping is obviously an injection from 4 to J.

Conversely, if there is an injection f from A to J, then fis a bijection from
A to f(4). Hence, A ~ f(A) and f(4) C J. Since obviously J is countable,
Theorem 4.16 shows that f(A4) is countable. Hence, f(A4) is either finite, in
which case A ~ f(A4) shows that A is finite, or f(4) ~ J, in which case since
~ is an equivalence relation, A ~ f(A) shows that 4 ~ J.

Theorem 4.17: A nonempty set A is countable if and only if there is a
surjection from J to A.

Proof: Suppose f is a surjection from J to 4. For each x € A, the set f~1({x})
is not empty. Let g(x) be the smallest integer in f~1({x}). Then g is an injec-
tion from A4 to J and corollary 2 of Theorem 4.16 shows that A4 is countable.

Conversely, assume A is countable. The second corollary to Theorem 4.16
shows that there is an injection f from A4 to J. Choose any element a € 4.
Since f~! exists and is a mapping from the subset f(A4) of J onto A, define a
function g : J— A4 as follows:

g(n)=f"1(n) for alln € f(A)
gn)=a for all n & f(A)

Then g is a surjection from J to A4.

Since every function f from a set A to f(A) is surjective, we conclude from
this theorem that the following corollary holds.

Corollary: A set is countable if and only if it is the range of a sequence.

Loosely speaking, this corollary states that a set is countable if and only if
it can be “arranged in a sequence.”
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CHAPTER 5

Infinite Collections of Sets

In chapter 4, we have given a certain meaning to the “number of elements
in a set” or, to be more precise, the concept of number of elements has been
replaced with a more suitable concept which has a precise meaning for sets
with more than a finite number of elements. Roughly speaking, the “infinite”
sets are those which have at least as many members as there are positive inte-
gers. It is with these infinite sets that analysis is principally concerned.

Definitions were given in chapter 1 for the union and intersection of two
sets. As a result of these definitions, the union and intersection of any finite
collection of sets are defined. In order to deal with infinite collections of sets,
it is necessary to extend the concepts of union and intersection to these col-
lections. Then after briefly discussing the relations that hold between various
combinations of unions and intersections, we turn to a discussion of the “num-
ber of elements” in a set.

Since this chapter is mainly concerned with setting the background for
other topics, some of the proofs, although they are quite plausible, are only
formal, but they can be made into proper proofs by changing some detail.

First we shall develop a certain formalism, which is frequently used when
dealing with infinite collections of sets, to designate these collections. We shall
always assume that the sets with which we are dealing are subsets of some
universal set X. In order to individuate the various subsets of X we suppose
there is some set A, which is called the index set, and that, with each element
o of A, there is associated a subset of X, say E,, (this defines a function from 4 to
the collection of all subsets of X). The set {2 whose members are these sets E, is

Q={E.|a € 4} (5-1)

Instead of using the terminology “a set of sets,” it is common practice to
refer to such a set as a collection of sets or a family of sets. This helps to make
clear the various levels of set construction.
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We shall always assume in dealing with infinite collections of sets that a
process such as that just described has at least implicitly been carried out.
The notation given by equation (5-1) will be used to designate the collection of
sets with which we wish to deal. Thus, the terminology “let Q= {G.| a € 4}
be a collection of sets’ indicates that the various sets G, in the collection are
individuated in the manner described previously.

Definition 5.1: Let Q={E,|a € A} be a collection of sets. The set

{x|x € E, (for at least one a € 4)}

is called the union of the collection of sets ) and is denoted by Lé:JA E..

The set
{x|]x EE, (for every a € 4)}

is called the intersection of the collection of sets () and is denoted by ﬂ E,.

Thus, U E, is the set S which has the property that x € S if and only if
x € E, for at least one o € A and ﬂ E, is the set I which has the property that
x € I if and only if x € E, for every a € A.1? We see from this that, for every
a€A,E, CS and I C E,. On the other hand, if ¥ and W are any two sets such
that, for everya € A, E, CV and W CE,,then S CV and W C I. Thus S is
the smallest set which contains every set E,, and I is the largest set contained
in every E,.

It should be noticed that if the index set A consists of two elements, say
ay and az, Definition 5.1 reduces to

aLeJAE"‘: {x|]x € Eq, or x € E,,}
QQAEQ= {x|]x EE,, and x € E,,}

and hence reduces to the definitions of union and intersection given in chapter 1.

12 Notice that we did not require the index set 4 to be nonempty. We find in fact that U E @and n E., X

where X is the universal set. The latter relation often causes some difficulty. What it amounts to is this: an element
x of the universal set does not belong to I only if it does not belong to some E,. Since in this case there are no E,’s there
is no element of the universal set which does not belong to I. Hence, X C I.
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If the index set 4 is countable, the family () is called a countable collection.
The corollary to Theorem 4.17 shows that in this case A is the range of a func-
tion g from the positive integers. Hence each a € 4 is equal to g(n) for some
n € J. It is clear from this that

{Ea|0‘ EA}l= {Eg(n)in eJ}

Hence, defining, for each n € J, F,= E4), we see that when the index set is
countable it can always be replaced by a subset of J. We will frequently
assume that this has been done when dealing with countable collections of sets.

It might be pointed out that the collection of sets {Fy|n € J} obtained in
this way is then the range of a sequence {F,} whose terms are sets.

Conversely, any sequence whose terms are sets has a countable collection
of sets {Fy|n € J} for its range.

If the jndex set A is the set J of positive integers, it is usual to denote the
union by U E, instead of by UJ E, and to denote the intersection by n E,
instead of by ﬂ E .. The symbol © serves here only to indicate that the umon or

intersection of a denumerably infinite collection of sets is taken and has no
connections with the symbols + © and — « introduced in chapter 2. If the index

set A consists of the integers 1, 2, . . ., n, it is usual to denote the union by
U EnorbyE/U ... UE, and to denote the intersection by m—1E"‘ or by
E] o o e nEn

To illustrate these ideas, suppose that, for each positive integer n, E,
is the subset of the positive real numbers defined by

En={xl0<x<l}
n

Let Q={E, | n_€ J}. As usual J is the set of positive integers. The intersection
of () satisfies Ql E.=0. To see this, note that for every real number x > 0 we
can find a positive integer m such that 1/m <x and so, for this m, x & En.
Hence, x & Q E.. Thus, there is no positive real number in {_jl E,.
Now suppose A={x|0<x<1}, E,={y|0<y<«}, and Q={E,|x € 4}.
Then
U E.={x|0=x<1} 5-2)
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It is clear that for every x € 4

E,C{x|0sx<1}
Hence

xE€EA

UE clx|osx<1} (5-3)

On the other hand, if t € {x |0<x <1}, thent<1 and so t EE, C U E;.
Now since ¢ was an arbitrary member of {x|0<x <1}, this shows that
{x|0=sx<1} C xLeJA E:. Combining this equation with (5-3) shows that

equation (5—2) holds.

The unions and intersections defined in this chapter satisfy many algebraic
identities that are analogous to those given in chapter 1 for the binary set

operations. Some of these are listed in table 5—1.

Table 5-1. —Set Theoretic Identities

Associative and commutative laws

U(UEa>=U(FUEa) Fﬁ(ﬂEa)=n(FﬂEa)
aEA a€E A aEA aEA

= = n Eos= n Ees= E.
agAagoEa‘a aLeJD agﬁf Fes (oLz.JmEAxDE“'a aEABQD P senaed T waeaxn

Distributive laws

u(ﬂEa)=ﬂ(FUEu) Fﬂ(UE,,)-:U(FﬂEu)

a & A a€ A a €4 a €A

DeMorgan’s laws

(uEu)"= N E; ( ng;)"= UE;

a€ A4 a€ 4 a€ A4 a€d
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It is not hard to verify these identities. To illustrate the procedure we will
verify the first of DeMorgan’s laws and the second distributive law.

In order to show that .
(UA E) =N Eg
a € a€ 4

let L and R be the left and right sides, respectively, of this equality. If x € L,
then x & UAE“' Hence x & E, for any « € A, and so x € E{ for everya € 4.
a &

Therefore x € DA E¢. Thus, L C R.
Conversely, if x € R, then x € E, for every a« € A. Hence x & E, for any
a € A, and therefore x €& LéJA E,. Thus x € ( QAE"‘) C. This shows R C L, and

it follows that R=1L.
To show that

FN (léJA Ea>= U (F N Ea>

a€A4

let L and R be the left and right sides, respectively, of this equality. If x € L,
thenx € F and x € LEJE E.. Hence x € F, and there exists a 8 € A such that

x € Eg. Therefore,x € F N Eg for some B € A, andsox € UE F N E,. This
a €

shows that L C R. If x € R, then, forsome 8 € 4, x € F N Eg. Hence,x € F

and x € Eg for someBE A. Thusx € F andx € LEJAE“ andsox €F N ( LGJAEQ>.

There are also many relations connecting images of sets and unions and
intersections of arbitrary collections of sets which generalize those given in
chapter 4 for binary set operations. We list some of these in table 5-1I.

Table 5-Il. —Laws Connecting Images with Unions and Intersections

[f:X—Y; E.CX for every @« € A; As C Y for every 8§ € D.]

(Y)Y e A(0,7)e0, e
a <6LEJD Aﬁ) =:chsjnf_‘(As) £ <BQDA5> zaguf_l(Aﬁ)
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These laws are also easy to verify. For purposes of illustration of the procedure,
we will verify one of these.

Let us show that
(Y Fa)= Y sk

Set L equal to the left side of this identity and R equal to the right side. That is,
L={y S Y' (Hx S LéJA Ea) for which y=f(x) }
and R=aL€JAf(Ea). For each o € 4,

fE)={y€Y| (dx € E,) for which y=f(x)}

Suppose y € L. Then, for some 8 € A, there exists an x € Eg such that
y=f(x). Hence, for this 8, ¥ € f(Eg), and this shows thaty € |J f(E.)=R
a€E A4

Since y was any point of L, we have shown that L C R. Conversely, suppose
that y € R. Then, for some 8 € 4, y € f(Eg). This means that there exists an

x € Eg such that y=f(x). Therefore, there certainly exists an x € U E, such

that y=f(x). This shows that y € L. Since y was any point of R, we see that
R C L. Combining this with the opposite inclusion shows that L=R.

In the next theorem we adopt the convention of assuming that matters
have already been arranged so that the index set of the countable collection

of sets is J.
Theorem 5.2: If O={E,|n € J} is a countable collection of countable

e o]
sets, then the set S= nL—Jl E, is countable.

Proof: According to the corollary to Theorem 4.17, for each positive integer n,
a sequence {xn,r} whose range is E, can be chosen. Having chosen such
sequences, we form the infinite array
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in which the members of E, make up the nth row. Evidently every member of
S is in this array. If the pattern indicated by the arrows is followed, a corre-
spondence can be set up between the members of this array and the positive

integers as follows:
X1, 15 X2, 15 X1,25 X3,1, X2,2, X1,3; X4,1, X3,2, X2,3, ¥1,45 « - -
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

In this manner then, we can find, for any element in the array and hence for
any member of S, a positive integer to which it corresponds. This procedure
therefore defines a surjective mapping from J to S. Theorem 4.17 now shows
that S is countable.

This proof is only formal since we have not actually constructed the surjec-
tive function but only indicated how it is to be constructed. However, the
mapping f: J X J— J defined by

f(n, m>):m(m+1)+(n;1)(n+2m—2) nom=1,2.3. . ..

can be shown to be a bijection by the theorems of factorization of integers.
Hence this function can be used to construct the desired surjection. However,
this is all mere detail with which we will not concern ourselves since the basic
ideas are indicated in the formal proof. '
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Theorem 5.3: Let A be a countable set; let D= A; and, for some integer
n=2,let Dhb=AX ... XA (taken n times). Then, for every positive integer
n, D, is countable.

Proof: D, is obviously countable. Suppose that, for any integer n =2, D,_; is
countable. If x € D,, then x=(d, a) withd € D,,_, and a € A. For each fixed
d € D,_,, the set E4={{(d, a)|a € A} can be put into one-to-one correspond-

ence with 4 and is therefore countable. Since Dn=dg Eq, D, is evidently

n—1

the union of a countable collection of countable sets and therefore Theorem 5.2
shows that D, is countable. Hence the conclusion follows by induction.

Corollary: The set of all rationals is countable.

Proof: If we apply Theorem 5.3 with n=2 and 4 the set of all integers, then
it follows that the set D, of all ordered pairs {a, b) where a and b are integers
is certainly countable. Now every rational number can be written in the form
b/a where a and b are integers. Hence it is clear that the set of all rationals can
be put into one-to-one correspondence with a subset £ of D, which corollary 1
of Theorem 4.16 shows is countable. Hence, E ~ J or else it is finite. Since
one-to-one correspondence is an equivalence relation, we conclude that the
set of all rational numbers is either similar to J or to a finite set. In either case,
the set of all rationals is countable.

The final theorem, called Cantor’s diagonalization theorem, shows that
there are many uncountable sets of real numbers. Again the proof which we
give is only formal but can easily be converted into a proper proof.

Theorem 5.4: The set A of all real numbers lying between zero and one
is uncountable.
Proof: Every real number lying between zero and one can be written in
decimal form as 0.5,S:S3 . . . where the Sj are integers. Let E be any countable
subset of A. We can write an arbitrary element of E, S*, in decimal form as
S*=0.5753S% . . . where the S% are integers lying between 0 and 9. Now,
since F is countable, we can arrange its members in a sequence as follows:
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S1=0.S1S1S1S

1Q1
3~ 4
2Q2
3~4
S3=0.53535353
4Q4
34

S4=0.545453S

.......

.......

Consider the elements S along the diagonal of this array. We can choose a
number p in 4 as follows. Let p=0.p1psps . . . where p; # Sy, p.#S3%, . . .,
pi#SJ, . . .. We can further choose the integers p; so that they lie between
zero and nine and are not all zeros or nines. Then the number p differs from
each member of E in at least one decimal place. Hence p & E and p € A4 so that
E is a proper subset of 4.

We have thus shown that every countable subset of 4 is a proper subset
of A. It follows that A is uncountable for, otherwise, A would be a proper
subset of 4 which is absurd.
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CHAPTER 6

Metric Spaces

Modern analysis began when Cantor developed his theory of point sets
(which included the important concepts of limit point, derived set, closed set,
ete.) from a study of the real valued functions on the real line and the distance
properties of the real line. Using Cantor’s ideas, Fréchet developed the concept
of metric space (and, for that matter, abstract spaces in general) when, in 1906,
he gave an abstract generalization of continuous functions on point sets.
Fréchet’s theory was phenomenally successful because nearly all the continuity
and convergence arguments that occur in analysis require only the few facts
about the concept of distance between points which were embodied in this
theory. The actual term ‘“metric space” was first used by Hausdorff in 1914.
In fact, he appears to be the first to use the geometrically suggestive word
“space” to refer to a set of objects of unspecified nature which are subject to
certain postulates.

In the theory of spaces it turns out to be very helpful as well as convenient
to use a terminology inspired by classical geometry. Thus the elements of a
space are referred to as points. A metric space, then, is merely a set of objects,
called points, between which a measure of distance is defined in such a way
as to single out those properties of the distance between real numbers (con-
tained in the order axioms of chapter 2) which are important for convergence
and continuity arguments. Because continuity and convergence are essentially
the central concepts in mathematical analysis, this chapter is devoted to the
study of the fundamental concepts of metric spaces. In the process of dis-
cussing these spaces, we shall develop the geometric language which is
currently used to discuss mathematical analysis. The reason for introducing
some of the concepts in this chapter will become apparent subsequently.

First, we define metric space. When we think of the distance between two
points in a plane or two points on a line, we think of a number associated with
these two points —say the number of inches read from a ruler placed between
the points. Now if we wish to assign a unique number to each distinct pair of
elements of an arbitrary set X, we can accomplish this by defining a function
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on X X X with values in the real number system (see remarks following Defi-
nition 4.1). With this in mind, we make the following definition.

Definition 6.1: 4 metric space (X, d) is a set X, whose members are
called points, together with a function d:X XX — R' which, for all p, q,
t € X, has the following properties

(a) d(p,q) >0  ifp#q d(p,p)=0

(b)y  d(p,q)=d(q.p)

(c) d(p, q) <d(p,t)+d(t, q)

The function d is called the metric or distance function or simply the
distance. The value of d at {p, q) is called the distance between the points
p and q.

Postulate (a) expresses the fact that the distance between two points
is always a positive number and equal to zero if and only if the two points
coincide; postulate (b) expresses the fact that the distance between two
points is the same measured in either direction; and postulate (c) expresses
the fact that the distance between two points is not decreased if it is meas-
ured via a third point. In fact, postulate (c) is a reflection of the fact that the
sum of the lengths of two sides of a triangle is greater than or equal to the length
of the third side, and so it is commonly known as the triangle inequality.

As in the case of linear spaces discussed in chapter 3 (see remarks follow-
ing Definition 3.1), it is common practice to refer to a metric space by the name
of the underlying set. However,when it is convenient to have the symbol for the
metric given explicitly, we shall employ the more correct procedure of referring
to the metric space as the ordered pair (X, d) where X is the underlying set
and d is the distance function which, in theory, contains the information as to
which numbers are to be assigned to each pair of elements in X.

Among the most important examples of metric spaces are the normed
linear spaces defined in chapter 3 and, in particular, the Euclidean spaces
RE. 1f v, and v, are any two vectors, it is customary to write v; — v, in place of
v1+(—v2). To see that the normed linear space V is in fact a metric space, it
is only necessary to define the functiond : ¥ X ¥— R in terms of the norm by

d(vi, v2)= |lv1 — vy for allvy, v EV 6-1)

Then, comparing postulates (N1) to (N3) of Definition 3.4 with postulates (a)
to (c) of Definition 6.1, we see that d is in fact a distance on the set V. We shall
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always define the distance between points in a normed linear space in this
manner. In fact, if V is a normed linear space, we shall use the terminology
“the metric space V" to refer to the metric space which is obtained by using
equation (6—1) to define a metric on the set V.

Specializing equation (6—1) to the Euclidean space R* we see that the
distance is defined by 13

d(x, y)=|x—y]| for all x, y € R* 6-2)

Therefore, in the Euclidean spaces R2? and R3 this is just the magnitude of the
vector joining the points x and y, as it should be. Also, if the points in the plane
are represented by complex numbers, and if the correspondence between the
norm of the vectors in the Euclidean space R? and the absolute value of the
corresponding complex numbers pointed out in the discussion following Theo-
rem 3.6 is used, then, according to this definition, the distance between two
complex numbers is just the absolute value of the difference of the two complex
numbers. We shall always define the distance between points in the complex
plane in this manner.

As we pointed out in chapter 4, the set R! of real numbers is a normed
linear space with the usual arithmetic if we define the norm by the absolute
value. We shall sometimes refer to this normed linear space as the Euclidean
space R!. The metric on this normed linear space is then defined by equation
(6—1). The distance between any two real numbers is just the absolute value
of the difference of the numbers. The metric defined on the real numbers in
this manner is called the usual metric for R*.

There are metric spaces more “abstract than the Euclidean spaces but
equally important. For example, let X be any set and let %(X) be the set of
all real valued functions defined on X such that, for any function f € %(X),
lub {|f(x) | |x € X} < . Then #(X) is a metric space if we define a metric d
on it by

d(fi, fo) =lub {|fi(x) —f2(x) | |x € X} for every f1, f: € % (X) (6-3)

We shall not stop here to verify that equation (6—3) is indeed a metric
since this is a special case of the metric spaces constructed in chapter 11.
The set #(X) is a particular example of a large class of metric spaces known

'3 Notice that according to the convention adopted in mathematics the set R* is merely a set of ordered k-tuples
of real numbers, but the Euclidean space R* is the set R* together with the algebraic operations and the norm defined
in Definition 3.5. Thus the Euclidean space R* is a metric space with the metric defined by equation (6-2).
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as function spaces. Assigning metrics to sets of functions gives these sets a
certain geometric nature which is a great help to our intuition about them. In
fact much of the success in the theory of functions can be attributed in no small
measure to the insight gained through this geometric point of view.

If (X, d) is a metric space and x, v, and z are any elements of X, then it
follows from postulate (c) of Definition 6.1 that

and d(x, z) <d(x,y)+d(y, z)

d(y, z) <d(y, x) +d(x, z)
We can write these relations as
d(x,z) —d(y, z) <d(x, y)
—d(y, x) <d(x, z) —d(y, 2)

and

But postulate (b) shows that d(x, y) =d(y, x). Hence
—d(x,y) =d(x,z) —d(y, z) <d(x, y)

or

|d(x, 2) —d(y, 2)] <d(x, y) (64

Let X be an arbitrary set. We can define a function d:X XX— R! as
follows:
lifx#y
d(x, y) ={ for everyx, y € X
Oif x=y

It is clear that conditions (a) and (b) of Definition 6.1 are satisfied. If any two
of the three elements x, y, z of X are equal, it is easy to see that condition (c)
is satisfied; if this is not the case, then d(x, z) =1 and d(x, y) +d(y, z) =2 and
so condition (c) is satisfied in all cases. Hence, (X, d) is a metric space. It is
said to be a discrete metric space. Discrete metric spaces are very useful as
counterexamples.
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In certain situations it is useful to allow a metric to take on the value + o
with the arithmetic given in Definition 2.3 (i.e., d is taken to be a function with
values in the extended real number system '#). This is never done, however,
unless it is stated explicitly. Although most of the following theorems about
metric spaces would go through with little change if we allowed an infinite
metric, we shall restrict ourselves to finite metrics, and only in chapter 11 will
we consider metric spaces with possibly infinite metrics.

If (X, d) is a metric space and Y is any subset of X, let dy be the restriction
of d to Y XY. Thus

dy(p,q)=d(p,q) forallp,g€Y

It is easy to see that (Y, dy) is a metric space. For if d satisfies conditions (a)
to (c) of Definition 6.1 for all p, g, t € X, then dy must certainly satisfy these
conditions for all p, g, ¢t € Y. The metric space (Y, dy) is called a metric sub-
space of (X, d) or, when no confusion can occur, simply a subspace of (X, d).
It is common practice (though logically incorrect) not to make any distinction
between the metric d and its restriction dy. Thus, we say d and dy are the
“same” metrics, drop the subscript Y, and write d in place of dv. No confusion
can result from this convention since the set Y is indicated explicitly in
the notation (Y, d). It is important to note that, in contrast to the situation
for linear spaces (as discussed preceding Definition 3.3) every subset Y of a
metric space (X, d) is a metric space in its own right with the “same” metric
as X. For example, every subset of the Euclidean space R* is a metric subspace
of R¥ but certainly not every subset of R¥ is a linear subspace of RF.

As it turns out there are other ways of defining a metric on the set R* (with

14 Some authors do not call this function a metric. There is, in fact, a somewhat less restrictive concept than that
of a metric which is called an écart (French for “separation”). This is defined as follows.

Definition: An écart on a set X is a function e : X X X—> R' U {+ o} such that, for all p, q, t € X,

(a)  e(p,q)=0;e(p,p)=0

b)  e(p,9)=elqg, p)

() e(p,q) <elp,t)+e(s, q)

The only differences between an écart and a metric is that an écart can take on the value +® and two distinct
points can have écart zero. In order to verify that an écart e is a metric, it is only necessary to establish that e(p, q)
is finite for all p, ¢ € X and that e(p, q) #0if p#gq.

What we will call a possibly infinite metric, then, is an écart e with the restriction that e(p, q) # 0 if p # q. An
écart e of this type can always be replaced by a finite metric. In fact, it is not hard to verify that the function
d:XXX—> R! defined by

__ep.q
d(p, q) TFelp, 0 forallp, g€ X

is indeed a metric.

67



ABSTRACT ANALYSIS

k> 1) than that given by equation (6—2). Before discussing this further, let us
look at a somewhat more general situation. Let (X, d) and (Y, §) be metric
spaces !5 and consider the set X XY of ordered pairs. We may ask whether there
is any way of defining a distance on X XY in terms of the metrics d and 8.
Actually this can be done in several ways. Suppose {(x;, y;) and (x., y2) are
any two points of X X Y. If we define the functions dx, di, and d, (from
(XXY) X (XXY) into R?) by

d>< (<xlsy1>’ <x27 y2>)=max {d(x17 X2),6(y1,_'y2)} (6_5)
dl(<x19 yl)v <x29 y2>):d(xlax2)+8(ylv Yz) (6_6)
d2(<x13 yl)? <x27 y2>)=([d(x19 x2)]2+ [6(y19 yz)]2)1/2 (6—7)

then it is easily verified that each of the three satisfies conditions (a) to (c)
of Definition 6.1. In other words, (X XY, dx), (XXY, d;), and (X XY, d>)
are all metric spaces. The metric space (X XY, dx) is called the direct product
of the metric space (X, d) and (Y, 8). All the results which we will prove for
the direct product (X XY, dx) of two metric spaces X and Y are also true in
the metric spaces (X XY, d;) and (X XY, d;). Equations (6—5), (6—6), and (6—7),
which define the functions dx, d;, and ds, respectively, can be extended in
an obvious way to the product of any finite number of metric spaces.

Now let us look at the case of R* with £ > 1. Since R*=R$X R¥~s with
1=<s=<k—1, we can construct a metric on the set R*¥ from the metrics on the
Euclidean spaces R* and R*~$ by any of the procedures just described. The
metric defined by equation (6—7) is the same as that defined by equation (6—2)
for the Euclidean space R* but the other two are certainly different. Thus the
direct product of the Euclidean spaces RS and R¥~$ is a different metric space
than the Euclidean space R¥. However, in a certain more general sense which
we will not go into here (i.e., in the sense of topological spaces), these metric
spaces are essentially the same. The preceding discussion points out the fact
that the same set can give rise to more than one metric space, so that the
convention of referring to the metric space only by the name of the underlying
set can sometimes lead to confusion.

Definition 6.2: Let (X, d) be a metric space and suppose p € X. We
define for any positive number r the open ball of radius r about p (or

15 Of course {X, d) and (Y, o) can be the same metric space.
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more simply the ball of radius r about p) B(p; r) to be the set
B(p; r)={q € X|d(p, ¢) <r} 6-8)

We emphasize that the radius of a ball is always a finite number and is
never equal to zero. An arbitrary ball B(p; r) is always a nonempty set since
it contains the point p. It is often helpful to think of the ball B(p; r) as being
the set of all points “close to”” p—the degree of closeness being given by r.

The notation B(p; r) used in Definition 6.2 for balls is more or less standard.
It should be noted that this notation makes no provision for indicating the metric
space to which the ball belongs. Thus, when one considers two (or more) metric
spaces simultaneously, the same letter B is used to designate the balls in both
spaces. When this is done, it is always made clear to which space the center
of the ball (p in eq. (6—8)) belongs, and this is used to determine which space
the ball is in. Occasionally, when the location of the center of the ball and its
radius are immaterial to the discussion (and when no confusion is likely to
result), a ball is denoted simply by the letter B with the argument omitted.

If V' is a normed linear space (the metric is defined by eq. (6—1)), then the
ball of radius r about the point v is the set

Bw;r)={w € V| [lw—v|| <r}

So that, in particular, balls in the Euclidean space R¥* (the metric is given by
eq. (6—2)) are the sets

B(w;r)={y ER* |x—y|<r} xER*

According to the discussion following Definition 6.1, balls in the complex
plane are the interiors of circles,'® as are the balls in the Euclidean space R2.
Naturally, when the complex numbers are identified with the points of R? in
the manner described following Theorem 3.6, the balls in the complex plane
and those in the Euclidean space R? consist of the same points.

In the Euclidean space R? balls are the interiors of spheres.

When equations (6—5) to (6—7) are used to define metrics on R? in terms
of the metric on the Euclidean space R!, the appearance of the balls are dif-
ferent in each case. The balls arising from the metric dx are “‘interiors” of

18 In this context balls are often referred to as disks.

69



ABSTRACT ANALYSIS

squares,'? those arising from d; are “interiors” of diamond-shaped regions,
and those arising from d: are “interiors” of circles.

More generally, let (X, d) and (Y, 8) be any two metric spaces and let
B({x, y); r) be a ball about any point {x, y) in the direct product (X XY, dx)
of (X, d) and (Y, 8). Then

B({x, y);r)=B(x;r) XB(y; r) (6—9)

As far as the material discussed in this book is concerned, it is not impor-
tant what detailed “shapes” balls have. Roughly speaking, it is only necessary
that the balls in any metric space have no dimension which is excessively large
compared with its other dimensions, that they consist only of the interiors of
sets, and that each point of the space is contained in a ball of arbitrarily
“small” size.

If (X, d) is a discrete metric space, then for any p € X

sin={'§ 1)
Definition 6.3: If a and b, with a < b, are any real (or extended real)
numbers, the segment (a, b) is defined to be the set of real numbers
{x|a <x < b}
and the interval [a, b] is defined to be the set of real (or extended real) numbers
{x|a<x<b}

We shall also sometimes encounter the half-open intervals [a, b) and (a, b]:
the first is defined to be the set of real (or extended real) numbers

{xla < x < b}
and the second is defined to be the set of real (or extended real) numbers
{x]a <x< b}

Let a;i< b; for i=1, 2, . . ., k be (finite) real numbers. We shall define the

17 A precise definition of the interior of a set will be given subsequently.
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Ek-cell Q to be the set
Q={xERk|ai<xi<bi, 1<is<k}

If we let I;=1ai, bi] for 1 <i<k, then, as shown at the end of chapter 1, we can

also write this as
k
Q= x I;
l:

Thus, for a and b finite, the segment (a, b) is a ball in the metric space
R?* with the usual metric. We remind the reader that points in the spaces R¥
must have finite real numbers for their coordinates. A 1-cell is an interval, a
2-cell is a rectangle, etc.

The concept in the following definition will not be used here but is given
for the sake of completeness.

Definition 6.4: Let V be a normed linear space. A set E C V is convex if
)\'Ul+ (1 - )\)1}2 (S E

whenever v1 EE, v € E and 0 <A <1.

It is easily seen that every subspace of V' is a convex set. Every ball in V'
is also a convex set. For if |jv;—v||<r and ||vz—¢||<r and 0 <X <1, then it
follows from (N3) of Definition 3.4 that

o+ (1 =N v —vf =\ (v1—v) + (1= 1) (=)
< M=o+ Q=N —v| <Ar+ (1—=N)r=r

It is also readily shown that in R* every k-cell is convex.

Definition 6.5: Let (X, d) be a metric space, let E be any subset of X,
and let p € X.

(a) A point p is called an adherence point of the set E if every ball about
p contains at least one point of E (p is also said to adhere to E).

(b) A point p is called a limit point of the set E if every ball about p
contains at least one point of E— {p}.

(c) A point p is called an interior point of the set E if there exists a ball
B about p such that B C E.
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Intuitively, we may think of an interior point of a set £ as being a point
which has only points of E in its immediate vicinity. In the complex plane this
corresponds to a point being “inside” the set.

Notice that {p} is the one point set that consists of the point p alone.
Therefore, the set E—{p} is the set of all points of £ except possibly the point
p itself, if p happens to be a point of E. Thus we may think of a limit point of
E as being a point which has at least some points of E, other than itself, arbi-
trarily close to it. If p is a limit point of E, then p is an adherence point of

E—{p}.
Suppose the metric space X is the set of real numbers R' with the usual
metric, E={1/n|ln=1,2,3, . . .}, and p=0. Then p is not a point of E. Since,

in R', the ball about 0 of radius & is the segment (— 8, 8), it is clear that, for
any & > 0, we can choose n so large that 1/n < 8. Thus every ball about p con-
tains at least one point of E. Since p& E, E—{p}={x € R'|x € E and
x & {p}} =F, and we see that p is a limit point of E.

If we let £ and X be the same as above but now set p=1, then p € E.
Since the segment (3/4, 13) is the ball about p=1 of radius 1/4 and since the
only point of E contained in this ball is p, we see that B(p, 1/4) contains a
point of E but no point of E—{p}={1/n|n=2, 3,4, . . .}. Hence p is not a
limit point of E. On the other hand, since every ball about p contains p and
p is a point of E, it is clear that every ball about p contains a point of E. Hence
p is an adherence point of E.

Definition 6.6: Let X be a metric space and let E C X.

(a) The set of all adherence points of a set E is called the closure of E
and is denoted by E.

(b) The set of all limit points of a set E is called the derived set of E and
is denoted by E'.

(c) The set of all interior points of a set E is called the interior of E and
is denoted by E°.

To illustrate the concepts involved in this definition, suppose that the
metric space X is R! with the usual metric and suppose that E is the half-open
interval (0, 1]; that is,

E={xeR|0<x=<1}

In this case, because the only limit point of E not belonging to E is 0, the set
E of all adherence points of E is the closed interval [0, 1]={x € R!|x=0 or
x € (0, 1]}. Furthermore, since every point of E is a limit point, the set E’ of
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all limit points of E is also equal to [0, 1]. Now the only point of E that is not
an interior point is 1 and hence the interior E°® of E is (0, 1).

To obtain another illustration, let the metric space X be the discrete set
of points given by X={(x, v) € R2|x, y € J} with the metric defined in terms
.of the absolute value as in equation (6—2). As always, J is the set of positive
integers. Let E={{(m, n) € X|m <M and n< N} where M and N are fixed
integers such that M, N=1. Since E has no limit points, E=E and E'= .
Also, since, for each point {(m, n) € E, any ball about {m, n) of radius less than
1 only contains a single point of E, namely, (m, n) itself, every point of E is
an interior point. Hence E°=E. Thus, in this case, E=E°=E. Now, if the
metric space X is changed to R? (with metric still defined by eq. (6—2)) while
E is left unchanged, it is still true that £’ =@ and that E=E. However, the
points of E are no longer interior points (every ball about a point of E contains
points of R2 not belonging to E) and E°=0.

Definition 6.7: Let X be a metric space and let E be any subset of X:
(a) E is said to be dense in X if E=X.

(b) E is said to be closed if E' C E.

(c) E is said to be open if E°=FE.

Intuitively, a set is closed if none of its points are arbitrarily close to points
outside the set. In the complex plane a set isiopen if all of its points are ““inside”
the set.

Clearly, the entire space X is both a closed and an open set. It follows
from Definition 6.5 that every point of a set E is an adherence point of E and
that every limit point of E is an adherence point of E. Conversely, if p adheres
to a set E and is not a limit point of E, then there is a ball B about p which
contains no points of the set E— {p} but contains at least one point of E. We
conclude (since p & E implies E=FE —{p}) that p is a point of E. Points for
which this occurs are called isolated points of E. Thus a point is an adherence
point of a set E if and only if it is either a point of E or a limit point of E. This

can be written in symbols as _
E=EUFE

From this and the equivalence of relations (1-2a) and (1-2c) of chapter 1, it

follows immediately that a set E is closed if and only if E=E. We could then
have used this condition as the definition of a closed set. Compare this with
Definition 6.7(c).
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It is also clear that, for any set E,
ESCECE

In the preceding discussion we have pointed out some almost immediate

consequences of Definitions 6.5 to 6.7. We now prove as theorems some less
direct consequences of these definitions.

Theorem 6.8: E C F implies E C F and, for any two sets E, and E,

E.UE,=E UE; (6-10)

Proof: Suppose E C F. If p is a point of E, it is also a point of F and therefore
a point of F. If p is a limit point of E, then it is also a limit point of Fand there-
fore a point of F. Thus p € E implies p € F. Hence we conclude that E C F
implies £ C F E C F. For any two sets E, and E,, this shows that E,CE,UE,and
E,C E, U E2 Therefore, E1 UE, C E1 U E,. Now suppose p €E £, U E, but
p@FE,UE,; thatis p @ E; and p & E>. Then there exist balls B(p; r;) and

B(p; r2) about p such that B(p; r;) N E;=@ and B(p; r2) N E2=0@. Let r
be the smaller of the positive numbers ry and r». Then B(p;r) C B(p; r1) and
B(p; r) C B(p; r2). Hence B(p; r) N Ei=@ and B(p; r) N E:=@. Thus
B(p; r) N (E; U E;)=@. This shows that p is not an adherence point of
Ey U E,; thatis, p € E, U E:, which is a contradiction. We see, then, that
p € E, U E; implies p € E, U E, (ie., Ef UE, C E; U E,) and so we
conclude that £, U E,=E, U E..

It is easily seen that the argument used in the proof can be extended to
any finite union of sets. We must point out, however, that it cannot be extended
to any infinite union of sets since the proof depends very strongly on the fact
that the smallest member of a finite set of positive numbers is a positive num-
ber. In the case of an infinite set, of course, the proper extension of the concept
of smallest member is the concept of greatest lower bound, and it is not true,
in general, that the greatest lower bound of a set of positive numbers is positive.
We shall frequently encounter the principle involved here.

Corollary: If F is closed and E C F, then E C F.

Proof: This follows from the theorem and the fact that, if F is closed, F=F.

Theorem 6.9: (a) Every ball about a limit point p of a set E contains
infinitely many points of E. (b) If A is a dense subset of the metric space (X, d)
and p is a limit point of X, then p is a limit point of A.
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Proof: Part (a). The proof is by contradiction. Hence assume that there
exists a ball B about p which contains only finitely many points of E and, there-
fore, only finitely many points of £ — {p} (B must contain at least one point of
E—{p} since p is a limit point of E). Denote those points of E— {p} which
belong to B by qi, g2, . . ., gn. Now there exists an integer m such that
l<=m=nand
min d(p, ¢;) =d(p, qm)

Since by construction q; # p for any j, it follows that d(p, ¢;) >0forl<j<n
and in particular that d(p, gm) > 0. It is clear that, for 1 <j=<n,

q; € B(p; d(p, qm))

So the ball B(p; d(p, gm)) about p contains no point of E—{p}, and p cannot
be a limit point of E. This is contrary to hypothesis and therefore the assump-
tion must be false. This proves part (a).

Part (b). Since p is a limit point of X, any ball B(p; €) about p contains a
point of X — {p}. Let g be such a point. Clearly 0 < d(p, q) < e. Hence upon
putting p=min {d(p, q), e—d(p, q)}, we find that p > 0. If s is any point of
B(g; p), then

d(p,s)<d(p, q)+d(q,s)<d(p,q) +p=<d(p,q)+e—d(p, q)=¢

Therefore s € B(p, €). Since s was an arbitrary point of B(q, p), we conclude
from this that B(q; p) C B(p; €. Now p & B(q; p) since d(p, q) = p. But it
follows from the fact that 4 is a dense subset of X that B(q; p) contains a point
of A, say t. Thus t € B(p, €) and t # p. This shows that B(p; €) contains a
point of A —{p}. Since B(p; €) was any ball about p, we conclude that p is a
limit point of A.

The following corollary is an immediate consequence of this theorem.

Corollary: No finite set can have a limit point.

If the set E has no limit points, then E' = @ and, since @ is a subset of every
set, we see E'CE. We therefore conclude that every finite set is closed. If
every ball B about p contains infinitely many points of E, then certainly it
contains at least one point of E — {p}. It therefore follows from Theorem 6.9(a)
that a point p is a limit point of a set E if any only if every ball about p con-
tains infinitely many points of E. There is no reason why this could not have
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been taken as the definition of a limit point instead of the one given in

Definition 6.5(b).

Theorem 6.10: A subset E of a metric space is open if and only if its
complement is closed.

Proof: Let E¢ be closed and let p be any point of E. By definition p & E¢ and
therefore p cannot be a limit point of E¢. This means that there is some ball B
about p such that B contains no points of E¢—{p}. Since p & E¢, this shows
that B contains no points of E¢. Thus, ¢ € B implies q & E¢, which in turn
implies g € E. It follows that B C E. Thus p is an interior point of E. Since p
was any point of E, we conclude that E is open.

Conversely, let E be an open set and let p be any limit point of E¢. Then
every ball about p must contain at least one point of E¢; that is, no ball about
p contains only points of E. This shows that p cannot be an interior point of E.
But the fact that E is open then implies that p cannot be a point of E which
means that it must be a point of E¢. Since p was any limit point of E¢, we
conclude that E¢ contains all its limit points.

Now let F be any set. Since F is the complement of F¢, the theorem shows
that if F is closed then F°¢ is an open set and that if F is an open set then F*¢
is closed. Thus, the following corollary is an immediate consequence of this
theorem.

Corollary: A subset F of a metric space is closed if and only if its comple-
ment is open.

We see from this that, having defined open sets, we could have defined
the closed sets to be just those sets which are the complements of the open sets.

If (X, d) is any metric space, the empty set @ being equal to X¢ must be
both open and closed. It is easy to show that, in R*> @) and R* are the only sub-
sets which are both open and closed.

The proof of the next theorem is illustrated in figure 6-1.

Theorem 6.11: Balls are open sets.

Proof: Suppose ¢ is an arbitrary point of the ball B(p; r). Since d(p, q) <r,
we can find a positive number u such that

d(p,q)=r—u
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Now if ¢t €B(q; u), then d(t, q) < u. Therefore d(p, t) <d(p, q) +d(q, t)
<r—u-+u=r. This shows that t € B(p; r) which implies

B(q; u) CB(p; r)

Thus ¢ is an interior point of B(p; r). Since g was an arbitrary point of B(p; r),
we conclude that B(p; r) is open.

Fi1GURE 6—1.—Venn diagram illustrating Theorem 6.11.

The technique used in the proof of part (b) of the next theorem can easily
be adapted to show that any intersection or union of a finite collection of balls
about a single point p is also a ball about p. This theorem gives the principal
“internal’’ properties of open sets.

Theorem 6.12: (a) The union of an arbitrary collection of open sets is
open. (b) The intersection of a finite collection of open sets is open. (c) The
empty set and the entire space are open.

Proof: To begin with, part (c) has already been established, and we include
it here only for later reference.

Part (a). Let {Go|@ EA} be an arbitrary collection of open sets. If

¢=UG,

a€A4
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p €G means that, for some a €4, p EG,. Since G, is an open set, there must be
a ball B about p such that BCG, and, therefore, it must also be true that
B C G. This shows that p is an interior point of G and since p is an arbitrary
point of G, it follows that G is open.

Part (b). Now let {G,, G», . . ., G,} be a finite collection of open sets. If
n
E=NGC;
i=1
pEE means that pEG; for every i=1, 2, . . ., n. Since each G; is an open
set, there exist balls B(p; r;) about psuch that B(p; r;) C G;fori=1,2, . . ., n.
If we set
r= min r;
1<i<n
then r >0 and for every i=1,2, . . ., n,

B(p; r) CB(p; r;) CG;
But this shows that
B(p;r)CE

and therefore that p is an interior point of E. Hence (since p was any point
of E) E is open.

Corollary 1: Every subset of a discrete metric space is open.
Proof: If (X, d) is a discrete metric space, then {p}=B(p; 1/2) for every
pEX. If E is any subset of X, it is clear that £'= U {p}. Hence E= U B(p; 1/2).
pEE

pPEE
Thus E is the union of open sets. Theorem 6.12(a) now shows that £ is open.

Corollary 2: The intersection of an arbitrary collection of closed sets
is closed. The union of a finite collection of closed sets is closed.
Proof: Let {F,]Ja €A} be an arbitrary collection of closed sets. The corollary
to Theorem 6.10 shows that, for each aEA4, F¢ is open. Thus, Theorem 6.12

shows that L{ F¢ is open, and so Theorem 6.10 shows that <UA F&) is closed.

But taking the complement of the second DeMorgan law of table 5-1 yields
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the identity
NF.= ( U Fg)
a€EA aEA

The second part of the corollary follows in the same way from part (b)
of Theorem 6.12 and from the following identity obtained from table 5-1:

Lle Fi= (ﬁ Ff)c

We might mention that, since in the Euclidean space R! the segments
(—1/n, 1/n) are open sets forn=1,2,3, . . . and since () (—1/n, 1/n)={0},
n=1

part (b) of Theorem 6.12 cannot be extended to infinite collections of open sets.

Theorems 6.11 and 6.12 show that an arbitrary union of balls is an open
set. On the other hand, if G is any open set and p is any point of G, there is a
ball B(p; rp) about p such that B(p; r,)CG and therefore U B(p; rp) CG. But
every point of G is in one of these balls so we conclude "¢

UB(p: 1) =6 (6-11)

Therefore every open set is a union of balls. We thus arrive at the following
conclusion: 4 set is open if and only if it is a union of balls. This gives us then
another way of defining open sets. Upon combining this with the remarks
following Theorem 6.10, it becomes clear that once it is known which subsets
of a given metric space are balls all the open and closed sets can be found.

Thus, in the case of R' with the usual metric, all the segments are open
sets and any set which is a union of segments is an open set. In the complex
plane, the interiors of disks are open sets; that is, if z is the complex variable
x+iy (x and y real), all sets of the form {z| |z| < r} (with r > 0) are open. Also,
any union of sets of this type is open. In three-dimensional Euclidean space,
the interiors of spheres are open sets, etc. On the other hand, even though
every segment is an open set when considered as a subset of the Euclidean
space R!, segments are not open sets if they are considered as subsets of the
Euclidean space R2. To see this, notice that every circle around a point on the
line contains points of R? in its interior which are not on the line and these
points do not belong to any segment.
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Suppose that E; is an open subset of the metric space (X, d) and E: is
an open subset of the metric space (Y, 8). If {(x, y) is any point of E; X E5,
then there exist balls B(x; ri) C E; and B(y; r:) € E,. If we set r=min {r;, r2},
then B(x; r) CB(x; ri) CE,, and B(y; r) CB(y; r:) CE2. Equation (6-9) shows
that if B({x, y); r) is the ball about (x, y) of radius r in the direct product
(XXY,dx of {X, d) and (Y, &), then

B({x, y); r)=B(x; r) XB(y; r)
B({x,y); r)CE, X E;

Hence

Since (x, y) was any point of £, X E., we have just proved that if E; is an open
subset of a metric space (X, d) and E, is an open subset of the metric space
(Y, 8), then E, X E; is an open subset of the direct product of the two spaces.

We have already pointed out that, although we have proved this result
only for the metric space (X XY, dyx), it also holds true for the metric spaces
(XXY,d;)and (X XY, d>) where d; and d: are the metrics defined by equations
(6-6) and (6-7), respectively.

Theorem 6.12 gives us a means of forming a mathematical structure which
is more general than the metric space. The statement of this theorem contains
three properties that open sets must have. If these are taken as postulates,
they can be used in a certain sense to define the open sets. In this manner the
notion of open sets can be taken as basic instead of the notion of distance as
in the case of metric space. To be more specific, suppose we are given a set X
and a certain collection @ of subsets of X. Suppose the members of @ are called
open sets and they satisfy conditions (a) to (c) of Theorem 6:12. Then, (X, @)
is called a topological space and @ is called a topology for X. The concept of
topological space grew out of Hausdorff’s work in 1914.

Thus, given any metric space (X, d), there is a topological space (X, @)
(having the same basic set X) associated with it in such a way that the members
of O are just the open sets in (X, d). Given any set X there are usually many
ways of defining a distance on that set. Thus, for the same set X, we may have
two different metric spaces (X, d) and (X, d’') corresponding to the different
metrics d and d’. We have already encountered this situation when we defined
a metric on the direct product of two metric spaces in terms of the metrics
defined on each of the component metric spaces. It may turn out, however,
that these different metric spaces (X, d) and (X, d') are associated with the
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same topological space.'® If this is the case, the metrics d and d' are said to
give rise to the same topology for X or to be topologically equivalent. We shall
give a more precise definition of this concept in chapter 9.

On the other hand, not every topological space can be associated with
a metric space in this manner. Those which can be are said to be metrizable.
Since a topological space is really such a general structure, it turns out that
metrizable spaces possess many desirable properties which general topological
spaces do not. This condition is ameliorated in practice by restricting the
topological spaces further by the imposition of one or more postulates in addi-
tion to those already discussed. In this way several different types of topological
spaces arise which are still more general than metrizable spaces but have many
of their desirable features.

In topological spaces, the concept of ball is replaced by the concept of
neighborhood. A neighborhood of a point is defined to be any open set which
contains that point. It turns out, as we shall see, that much of what will be said
about general metric spaces can be expressed by using the concept of ball
instead of referring to the metric explicitly. In turn, since every ball about
a point is also a neighborhood and every neighborhood of a point contains a ball
about that point, much of this still goes through when balls are replaced by
neighborhoods. In this way a large part of theory of metric spaces developed
here can be applied to topological spaces. The preceding discussion shows
that many of the properties of a given metric space can be completely specified
in terms of the open sets (neighborhoods) of that metric space. Such properties
are then also intrinsic properties of the associated topological space and are
therefore called the topological properties of the metric space (as opposed to
the purely metric properties). For example, if p is an adherence point of a set
E and V is any neighborhood of p, there is a ball B about p such that B C V.
Since B contains a point of E, so does V. Thus every neighborhood of p contains
a point of E. Conversely, since balls are neighborhoods, if every neighborhood
of p contains a point of £, then certainly every ball about p must also. Hence a
point p is an adherence point of a set £ if and only if every neighborhood of p

'8 Actually the three metrics given in equations (6-5), (6-6), and (6-7) determine the same topological space.
In fact, it can be shown that there exist constants ¢, and ¢ such that

adi(p, q) < dj(p, q) < cdi(p, q)

where i, j=X,1, 2. We shall see in chapter 9 that any two metrics that satisfy a relation of this type determine the
same topological space.
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contains a point of E. We see then that whether or not a given point is an
adherence point of a given set is a topological property since it, in effect,
depends only on which sets are open. For a further discussion of topological
spaces, the reader is referred to references 2 to 4.

Theorem 6.13: For any set E, E is closed.

Proof: According to the corollary to Theorem 6.10, it is sufficient to prove E°
is open. Let p be any point of E°. If we can show that p is an interior point of £°¢,
we are done. Evidently p ¢ E. Therefore, there exists a ball B(p; r) about p
which contains no points of E; that is, B(p; r) C E¢. Theorem 6.11 shows that
B(p; r) is open. Hence, if ¢ is any point of B(p; r), there exists a ball B(g; p)
about g such that B(q; p) C B(p; r) C E¢. This shows that B(q; p) contains no
points of E and therefore that ¢ is not an adherence point of E. Since g was
arbitrary, we conclude that no point of B(p; r) is an adherence point of E.
Hence no point of B(p; r) is a point of E; that is, B(p; r) C E°. Thus pis an
interior point of E°.

If p is a point of a metric space (X, d) and r is a nonnegative number then
the set
Clp;r)={x€X|d(p,x)<r}

is often called the closed ball of radius r about p. Let g be any point of C¢(p; 1),
the complement of C(p; r). Then d(p, g) > r. Hence upon setting p=d(p, q)—r,
we find that p > 0. Now if ¥y € B(q; p) then

d(p,y) =d(p, q) —d(q,y) >d(p, q) —p=r+p—p=r

Hence, y & C(p; r); that is, y € C¢(p; r). Since y was any point of B(g; p), we
conclude that B(q; p) C C¢(p; r). And, since q was any point of C¢(p; r), we
conclude that C¢(p; r) is open. The corollary to Theorem 6.10 now shows that
C(p;r) is indeed closed. However, it is not true in general that C (p; r)=B(p; r).
For if (X, d) is a discrete metric space then for any point p € X

B(p; 1)={p}={p}

But C(p; 1)=X.

Let us emphasize that when the term “ball” is used it always refers to an
open ball. The closed balls in R are intervals.

We see from Theorem 6.13 and the corollary of Theorem 6.8 that E is the
smallest closed set which contains E. Let Q= {F,|a € 4} be the collection of
all closed sets which contain E. The collection () is certainly not empty since
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the whole space itself is in {). The second corollary to Theorem 6.12 shows that
ﬂ F, is closed and, since E C F, for every a« € A, we see that E C N F..

a€4d

On the other hand, ﬁ Fqis a subset of every closed set which contains F;
that is, ﬂ F,is also the smallest closed set which contains E. Evidently then

Eana

aE A4

Thus we could have defined the closure of a set E to be the smallest closed
set which contains E or, equivalently, the intersection of all closed sets which
contain E.

It is easy to see that in R (with the usual metric) every interval is a closed
set and in Euclidean space R* every k-cell is a closed set.

Theorem 6.14: (a) Every closed set of real numbers which is bounded

above contains its least upper bound. (b) Every closed set of real numbers which
is bounded below contains its greatest lower bound.
Proof: Part (a). Let £ be any closed set of real numbers which is bounded
above and set b=sup E (which exists by axiom III of chapter 2). For every
positive number 8, b — 8 is not an upper bound of E. Hence there exists a point
p € E such that b—8& < p. Now if we assume b & E, we can conclude that
b—8 < p < b. Since in R! balls are segments (i.e., B(b; 8) = (b—8, b+38)),
we see that every ball about b contains a point of E — {b}. This shows that b is
a limit point of E. But since E is closed, this implies b € E.

Part (b). The proof is similar to that of part (a).

We have already observed that, if Y is any subset of the metric space
(X, d), Y itself is a metric space with the same metric; that is, (¥, d) is a metric
space. We have seen by example, however, that, if E C Y C X and E is an open
subset of the metric space (Y, d), E need not be an open subset of the metric
space (X, d). Of course, the same must be true for closed sets since they are
merely the complements of the open sets. Actually it turns out that there is a
simple relation between the open sets in (X, d) and those in (Y, d). Since the
property of being open is really defined in terms of balls, we shall first discuss
the relation between the balls in the metric space (X, d) and those in the
metric space (Y, d). Let us temporarily denote balls in the metric space (X, d)
by attaching the superscript X to the usual notation and those in the metric
space (Y, d) by attaching a superscript Y. Thus, for example, BX(p; r) denotes
a ball in (X, d) and BY(q; p) denotes a ball in (Y, d). We now look at the
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definition of balls. Equation (6—8) of Definition 6.2 tells us that the balls in
(X, d) are sets of the form

BX(p;r)={q€X|d(p,q)<r} r>0
and the balls in (Y, d) are sets of the form
BY(p;n)={q€Y|d(p,q9)<r} r>0

where of course it is understood here that p € Y. It follows from these relations
that if BY(p; r) is any ball in (Y, d} about any point p € Y, then

B¥(p;r)={q€Y|dp;q) <r}={¢E€X|d(p,q)<r}NY
=BX(p;r)NY

Of course, this also shows that if p is any point of Y and BX(p; r) is any ball

about p in the metric space (X, d), then BX(p; r) N Y is a ball about p (of
radius r) in the subspace (Y, d). Thus the following theorem has been proved.

Theorem 6.15: Let (X, d) be a metric space and suppose Y C X. Then,
for any point p €Y, the set A is a ball about p of radius r in the subspace (Y, d)
if and only if there is a ball BX(p; r) about p of radius r in the metric space
(X, d) such that
A=Y N BX(p; r)

This theorem is illustrated in figure 6—2.

FIGURE 6—2.—Balls in subspaces.

We now turn to the general case of open sets, and prove the following
theorem.
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Theorem 6.16: Let (X, d) be a metric space and suppose Y C X. Then
a subset G of Y is open in the subspace (Y, d) if and only if there exists an open
subset H of the metric space (X, d) such that

G=YNH 6-12)

Proof: First suppose that G is an open set in the metric space (Y, d). We have
already shown in the remarks following the corollaries to Theorem 6.12 (eq.
(6—11)) that, for every p € G, there exists a positive number r, such that

¢= U BY(p; 1)
PEG
Theorem 6.15 now shows that, for eachp €7,

BY(p; rp)=Y N BX(p; rp)

Hence

G=pL€JG[Y NBX(p; rp) =Y N [pLeJGBX(p; rp)]

and Theorems 6.11 and 6.12 show that the set H= U BX(p; r) is an open set
in the metric space (X, d).

Conversely, suppose G is given by equation (6-12) and H is an open set
in the metric space (X, d). If p is any point of G, then p € H and, since H is
open in the metric space (X, d), we can find a ball B¥(p; p) about p such that
BX(p; p) C H. Hence

YNBX(p;p) CYNH=G

but Theorem 6.15 shows that Y N BX(p; p) is a ball in the metric space (Y, d)
about p. Thus in the metric space (Y, d) all the points of G are interior points.

Corollary 1: If (X, d) is a metric space and E C X, a necessary and suffi-
cient condition that every subset D of E which is open in the metric space (E, d)
be open in the metric space (X, d) is that E is an open subset of (X, d).

Proof: To see that this condition is necessary, we need only consider the case
when D=FE. The sufficiency of the condition follows from the theorem and the
fact that (Theorem 6.12(b)) the intersection of two open sets is open.
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Corollary 2: If (X, d) is a metric space and E is any subset of X, then the
set D C E is closed in the metric space (E, d) if and only if there exists a closed
subset F of (X, d) such that D=F N E.

Proof: By the corollary to Theorem 6.10, D is a closed subset of (E, d) if and
only if the complement of D in E, E— D, is an open subset of (£, d). Therefore
it follows from the theorem that D is a closed subset of (E, d) if and only if
there exists an open set G of (X, d) such that

E—-D=GNE (6-13)
Since E—~D=E N D¢, equation (6—13) is equivalent to
EcU(END)Y=E<U(GNE)
and hence by the distributive law (table 1-1) to
EcUDe=E<U G
DeMorgan’s law now shows that equation (6-13) is equivalent to
END=ENG*
But since D C E, equation (6—13) is also equivalent to
D=FE N G¢

The corollary to Theorem 6.10 now shows that the assertion is true if we take
F=¢G-.

Definition 6.17: An open cover of a subset E of a metric space is any
family {Go|la € A} of open subsets of the metric space such that E C U 6..

a€A
Definition 6.18: 4 subset K of a metric space is called compact if every
open cover of K contains a finite subcover of K. A metric space is called a
compact space if it is a compact subset of itself.
This means that if {G.|a € A} is any open cover of K then there is a finite
number of the a’s, say a;, as, . . ., ay, such that

KCGyUGy, U ... UGs

The definition of compactness given in this form shows clearly that it is a topo-
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logical property. Although compact sets are exiremely important, it is not easy
to give a physical picture of the property of compactness. It is clear that every
finite set is compact and that the union of a finite number of compact sets is
compact. In fact, compact sets have many of the properties of finite sets even
though they are frequently uncountable sets.l® That there is a large class of
uncountable compact sets in the very important spaces R* will be shown subse-
quently. It is not surprising then that compact sets have some very desirable
features (especially in connection with continuity which is discussed in chapter
8). Among these is the fact that, in contrast to the properties of being open or
closed, the property of compactiness is independent of the metric space in
which the set is embedded. The next theorem shows this.

Theorem 6.19: Let (X, d) be a metric space, and suppose K CY C X.
Then K is a compact subset in the metric space (X, d) if and only if it is a com-
pact subset of the subspace (Y, d).

Proof: Let K be a compact subset of the metric space (X, d) and let {Gu|a €A}
be any family of open subsets of the metric space (Y. d) such that K C GLEJAGQ.

It follows from Theorem 6.16 that there is a fam